<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 36 Issue 8
Jul.  2021
Turn off MathJax
Article Contents
LI Yan-qing, XIU Chun-bo, ZHANG Xin. Wind speed forecasting by a hysteretic neural network based on Kalman filtering[J]. Chinese Journal of Engineering, 2014, 36(8): 1108-1114. doi: 10.13374/j.issn1001-053x.2014.08.018
Citation: LI Yan-qing, XIU Chun-bo, ZHANG Xin. Wind speed forecasting by a hysteretic neural network based on Kalman filtering[J]. Chinese Journal of Engineering, 2014, 36(8): 1108-1114. doi: 10.13374/j.issn1001-053x.2014.08.018

Wind speed forecasting by a hysteretic neural network based on Kalman filtering

doi: 10.13374/j.issn1001-053x.2014.08.018
  • Received Date: 2013-07-01
    Available Online: 2021-07-19
  • The hysteretic characteristic was introduced into the activation functions of neurons,and a forward hysteretic neural network was proposed. In combination with the Kalman filter algorithm,the hysteretic neural network was applied to wind speed forecasting. A change rate series of wind speed was constructed according to the original wind speed time series. Forecasting analysis of both the series was performed with the hysteretic neural network,these prediction results were fused using the Kalman filter algorithm,and thus the optimal estimated results were obtained. Simulation results show that the hysteretic neural network has more flexible structure,better generalization ability,and better prediction performance than the conventional neural network. The prediction performance can be further improved by Kalman filter fusion.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (224) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频