<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 36 Issue 2
Jul.  2021
Turn off MathJax
Article Contents
YU Zhong-zhong, WU Zi-jun, TAN Li, TU Xu-yan, YANG Yang, WANG Lu. Multivariate time series fuzzy clustering segmentation mining algorithm[J]. Chinese Journal of Engineering, 2014, 36(2): 260-265. doi: 10.13374/j.issn1001-053x.2014.02.019
Citation: YU Zhong-zhong, WU Zi-jun, TAN Li, TU Xu-yan, YANG Yang, WANG Lu. Multivariate time series fuzzy clustering segmentation mining algorithm[J]. Chinese Journal of Engineering, 2014, 36(2): 260-265. doi: 10.13374/j.issn1001-053x.2014.02.019

Multivariate time series fuzzy clustering segmentation mining algorithm

doi: 10.13374/j.issn1001-053x.2014.02.019
  • Received Date: 2012-12-30
    Available Online: 2021-07-10
  • Multivariate time series collected by industrial monitoring systems often have problems such as numerous raw data, repeated segmentation results, redundant intersections and blurry boundaries in the process of using data mining technologies to acquire internal existing unknown patterns, leading to unsatisfied mining results when the dataset involves mutation variables or inferior relevance among the data. To resolve these problems, this article introduces a new multiple time sequence clustering algorithm. Experimental results show that this algorithm can overcome the shortage that the accuracy of clustering is often affected by initial values in the Gath-Geva algorithm. It can exhibit the potential variation of raw data and thus efficiently deal with segmentation in multivariate time series to get ideal mining results.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (237) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频