<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 34 Issue 1
Jul.  2021
Turn off MathJax
Article Contents
MA Yong, TONG Yao-yao, CHENG Yu-hu. An improved maximum relevance and minimum redundancy selective Bayesian classifier[J]. Chinese Journal of Engineering, 2012, 34(1): 26-30. doi: 10.13374/j.issn1001-053x.2012.01.006
Citation: MA Yong, TONG Yao-yao, CHENG Yu-hu. An improved maximum relevance and minimum redundancy selective Bayesian classifier[J]. Chinese Journal of Engineering, 2012, 34(1): 26-30. doi: 10.13374/j.issn1001-053x.2012.01.006

An improved maximum relevance and minimum redundancy selective Bayesian classifier

doi: 10.13374/j.issn1001-053x.2012.01.006
  • Received Date: 2011-04-22
    Available Online: 2021-07-30
  • A kind of improved mRMR SBC was proposed by using K-means clustering and incremental learning algorithms to enlarge the scale of training samples. On one hand, the testing samples are labeled using the K-means clustering algorithm and are added to the training set. A regulatory factor is introduced into the process of attribute selection to reduce the risk of mislabel resulting from K-means clustering. On the other hand, some samples that are most helpful for improving the current classification accuracy are selected from the testing set and are added to the training set. Based on the enlarged training set, parameters in the Bayesian classifier are adjusted incrementally. Experimental results show that compared with mRMR SBC, the proposed Bayesian classifier has better classification results and is applicable for solving the classification problem for the high-dimensional dataset with little labels.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (257) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频