<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 33 Issue 5
Jul.  2021
Turn off MathJax
Article Contents
GUO Qing-miao, LI De-fu, PENG Hai-jian, GUO Sheng-li, WU Zhi-gang, HU Jie, DU Peng. Effect of strain rate on the microstructural evolution of hot deformed GH625 superalloy[J]. Chinese Journal of Engineering, 2011, 33(5): 587-592. doi: 10.13374/j.issn1001-053x.2011.05.011
Citation: GUO Qing-miao, LI De-fu, PENG Hai-jian, GUO Sheng-li, WU Zhi-gang, HU Jie, DU Peng. Effect of strain rate on the microstructural evolution of hot deformed GH625 superalloy[J]. Chinese Journal of Engineering, 2011, 33(5): 587-592. doi: 10.13374/j.issn1001-053x.2011.05.011

Effect of strain rate on the microstructural evolution of hot deformed GH625 superalloy

doi: 10.13374/j.issn1001-053x.2011.05.011
  • Received Date: 2010-06-22
    Available Online: 2021-07-30
  • Publish Date: 2021-07-30
  • Hot compression tests were conducted on a Gleeble-1500 simulator at a true strain of 0.7 at different temperatures and different strain rates to investigate the dynamic recrystallization behavior of GH625 superalloy. Optical microscopy (OP) and transmission electron microscopy (TEM) were employed to analyze the effect of strain rate on the microstructural evolution and nucleation mechanisms of dynamic recrystallization (DRX). The results show that the actual deformation temperature of the sample deformed at a strain rate of 10.0s-1 is higher than the preset temperature, resulting in a deformation thermal effect. It is also found that the DRX of GH625 superalloy is controlled by both strain rate and deformation temperature. When the strain rate ? ≤ 1.0s-1, the size and volume fraction of DRX grains decrease with increasing strain rate. The nucleation mechanism of DRX is composed of discontinuous dynamic recrystallization (DDRX) characterized by the bulging of original grain boundaries and continuous dynamic recrystallization (CDRX) characterized by progressive subgrain rotation. However the size and volume fraction of DRX grains increase at a strain rate of 10.0s-1 due to the deformation thermal effect. The nucleation mechanism of DRX for GH625 superalloy deformed at a strain rate of 10.0s-1 is operating by DDRX with the bulging of original grain boundaries.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (236) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频