<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 32 Issue 6
Aug.  2021
Turn off MathJax
Article Contents
SONG Yong, SU Lan, JING Feng-wei, LIU Wen-zhong. Self-learning algorithm optimization for the rolling force model of hot strips[J]. Chinese Journal of Engineering, 2010, 32(6): 802-806. doi: 10.13374/j.issn1001-053x.2010.06.017
Citation: SONG Yong, SU Lan, JING Feng-wei, LIU Wen-zhong. Self-learning algorithm optimization for the rolling force model of hot strips[J]. Chinese Journal of Engineering, 2010, 32(6): 802-806. doi: 10.13374/j.issn1001-053x.2010.06.017

Self-learning algorithm optimization for the rolling force model of hot strips

doi: 10.13374/j.issn1001-053x.2010.06.017
  • Received Date: 2009-08-25
  • The influences of the number of rolled strips,the quality of measured data and the tolerance of rolling force prediction were taken into account for building a self-learning speed optimization model of rolling force.The grades and values of thickness and width were considered in the determinant condition of long-term self-learning to reduce the frequency of size change.The information of equipment states which was separated from the data of the last strip was used into the calculation of long-term self-learning factor to improve the continuity of the self-learning model.Offline simulation results show that the accuracy of the rolling force model is improved after the self-learning algorithm is optimized.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (177) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频