<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 32 Issue 1
Aug.  2021
Turn off MathJax
Article Contents
LU Hong-jian, GAO Yong-tao, LU Xiao-na, WU Shun-chuan. Range interval optimization of prestressed anchors based on the least squares support vector machine and artificial fish swarm algorithm[J]. Chinese Journal of Engineering, 2010, 32(1): 133-138. doi: 10.13374/j.issn1001-053x.2010.01.023
Citation: LU Hong-jian, GAO Yong-tao, LU Xiao-na, WU Shun-chuan. Range interval optimization of prestressed anchors based on the least squares support vector machine and artificial fish swarm algorithm[J]. Chinese Journal of Engineering, 2010, 32(1): 133-138. doi: 10.13374/j.issn1001-053x.2010.01.023

Range interval optimization of prestressed anchors based on the least squares support vector machine and artificial fish swarm algorithm

doi: 10.13374/j.issn1001-053x.2010.01.023
  • Received Date: 2009-07-01
  • The practical engineering of reinforced soil retaining walls in Jiehe Overpass,which locates on No.104 National Highway in Shandong Province of China,was taken as an example to determine the reasonable range interval of a prestressed anchor layout on the base of limited test data.Firstly,a nonlinear functional relation between the optimization parameters and optimization object was fitted by the least squares support vector machine(LSSVM).Then,the model was trained through data samples from in-situ test.Finally,the model was optimized by the artificial fish swarm algorithm(AFSA) to get the reasonable range interval,and the same time the rationality of optimization parameters was verified by monitoring the reinforcement effect of post-construction.The results show that this model is reasonable and feasible,with the characteristic of easily modeling,rapid convergence rate and high inversion accuracy.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (151) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频