<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 31 Issue 12
Aug.  2021
Turn off MathJax
Article Contents
LI Juan, LI Cui-ping, LI Zhong-xue. Grade interpolation in orebody based on support vector regression[J]. Chinese Journal of Engineering, 2009, 31(12): 1498-1502. doi: 10.13374/j.issn1001-053x.2009.12.003
Citation: LI Juan, LI Cui-ping, LI Zhong-xue. Grade interpolation in orebody based on support vector regression[J]. Chinese Journal of Engineering, 2009, 31(12): 1498-1502. doi: 10.13374/j.issn1001-053x.2009.12.003

Grade interpolation in orebody based on support vector regression

doi: 10.13374/j.issn1001-053x.2009.12.003
  • Received Date: 2009-03-11
    Available Online: 2021-08-09
  • The method of support vector regression (SVR) in combination with self organization feature mapping (SOFM) network was selected for grade interpolation in orebody, and was compared to the Thiessen polygons method, the distance power inverse ratio method and the Kriging method. The result shows that the prediction model of SVR is feasible and reliable for grade estimation.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (238) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频