<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 31 Issue 2
Aug.  2021
Turn off MathJax
Article Contents
DONG Shu-ge, RAO Qi-lin. Physical programming theory based on preference design[J]. Chinese Journal of Engineering, 2009, 31(2): 250-255. doi: 10.13374/j.issn1001-053x.2009.02.018
Citation: DONG Shu-ge, RAO Qi-lin. Physical programming theory based on preference design[J]. Chinese Journal of Engineering, 2009, 31(2): 250-255. doi: 10.13374/j.issn1001-053x.2009.02.018

Physical programming theory based on preference design

doi: 10.13374/j.issn1001-053x.2009.02.018
  • Received Date: 2008-02-22
    Available Online: 2021-08-09
  • The validity of physical programming based on preference design was studied from mathematical aspects. By both defining and quantifying of preference, four classes of preference functions and an aggregate preference function were constructed by using numerical method, and a mathematics model of physical programming was proposed. The result of example analysis accorded with the design of different preference areas.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (190) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频