<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 30 Issue 6
Aug.  2021
Turn off MathJax
Article Contents
JIAO Jicheng, GAO Xuedong, DENG Juntang, E Xu. Attribute reduction algorithm based on attribute union[J]. Chinese Journal of Engineering, 2008, 30(6): 694-697. doi: 10.13374/j.issn1001-053x.2008.06.024
Citation: JIAO Jicheng, GAO Xuedong, DENG Juntang, E Xu. Attribute reduction algorithm based on attribute union[J]. Chinese Journal of Engineering, 2008, 30(6): 694-697. doi: 10.13374/j.issn1001-053x.2008.06.024

Attribute reduction algorithm based on attribute union

doi: 10.13374/j.issn1001-053x.2008.06.024
  • Received Date: 2007-04-06
  • Rev Recd Date: 2007-05-30
  • Available Online: 2021-08-06
  • Attribute reduction of rough sets is an NP hard problem, but there is not a popular efficient algorithm presently. The attribute union concept based on the set theory and the attribute reduced algorithm based on this concept were presented. The algorithm translates the attribute reduction to find the attribute union, reducing the number of scanning the decision table and improving the reduced efficiency. The scanning strategy from bottom to top and with width priority can insure to find the minimal reduction. Also, an example was presented to describe the algorithm.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (160) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频