<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 30 Issue 2
Aug.  2021
Turn off MathJax
Article Contents
GUO Fei, LI Huade, RAN Zhengyun. Application of data mining in electrode prediction modeling of Anyang Steel[J]. Chinese Journal of Engineering, 2008, 30(2): 202-207. doi: 10.13374/j.issn1001-053x.2008.02.021
Citation: GUO Fei, LI Huade, RAN Zhengyun. Application of data mining in electrode prediction modeling of Anyang Steel[J]. Chinese Journal of Engineering, 2008, 30(2): 202-207. doi: 10.13374/j.issn1001-053x.2008.02.021

Application of data mining in electrode prediction modeling of Anyang Steel

doi: 10.13374/j.issn1001-053x.2008.02.021
  • Received Date: 2006-11-06
  • Rev Recd Date: 2007-05-11
  • Available Online: 2021-08-06
  • On the basis of electrode control in Anyang Steel, a prediction model was established by adopting data mining technique and applied to parameter tuning of an electrode control system. First the data mining process of the electrode prediction model was introduced. A variable structure generic Elman neural network, which can evolve the network structure, the weights and self-feedback gain coefficient simultaneously, was proposed based on a new hybrid generic algorithm and data mining algorithm. The Elman based on BP algorithm and the variable structure generic Elman neural network were applied to establishing of an electrode prediction model for Anyang Steel. The simulation results based on the spot real data of Anyang Steel show that data mining algorithm combined with the variable structure generic Elman neural network has better dynamic characteristic, faster approach speed, better precision than BP algorithm. Finally, when this model was applied to parameter tuning of the electrode control system in Anyang Steel, its control effeet was remarkable.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (150) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频