<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 27 Issue 6
Aug.  2021
Turn off MathJax
Article Contents
WU Guifang, XU Ke, XU Jinwu. Classification of surface defects for Cold rolled strips based on LVQ neural network[J]. Chinese Journal of Engineering, 2005, 27(6): 732-735. doi: 10.13374/j.issn1001-053x.2005.06.023
Citation: WU Guifang, XU Ke, XU Jinwu. Classification of surface defects for Cold rolled strips based on LVQ neural network[J]. Chinese Journal of Engineering, 2005, 27(6): 732-735. doi: 10.13374/j.issn1001-053x.2005.06.023

Classification of surface defects for Cold rolled strips based on LVQ neural network

doi: 10.13374/j.issn1001-053x.2005.06.023
  • Received Date: 2004-11-01
  • Rev Recd Date: 2005-01-17
  • Available Online: 2021-08-17
  • A new method which uses LVQ neural network in the automatic classification of surface defects for cold rolled strips was presented. The problems of long time and low accuracy in the classification of multi-defect pattern types with some traditional classification algorithms were resolved. Tested by 14 main defect types collected from online data, the results demonstrated that the method of surface defects for cold rolled strips based on LVQ neural network spent little time during training and classifying, and its accuracy could be assured on the recognition process of multi-defect pattern types.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (196) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频