<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 26 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
JI Shujuan, LI Shiqi. Mathematical Physics Essentiality of Phenomenological Similitude Based on Some Typical Metallurgical Processes[J]. Chinese Journal of Engineering, 2004, 26(4): 357-359. doi: 10.13374/j.issn1001-053x.2004.04.032
Citation: JI Shujuan, LI Shiqi. Mathematical Physics Essentiality of Phenomenological Similitude Based on Some Typical Metallurgical Processes[J]. Chinese Journal of Engineering, 2004, 26(4): 357-359. doi: 10.13374/j.issn1001-053x.2004.04.032

Mathematical Physics Essentiality of Phenomenological Similitude Based on Some Typical Metallurgical Processes

doi: 10.13374/j.issn1001-053x.2004.04.032
  • Received Date: 2003-12-10
    Available Online: 2021-08-17
  • The mathematical physics essentiality of phenomenological similitude is pointed out to have the same dimensionless models, including the same model structures and the same values of all characteristic numbers in a dimensionless normalized coordinate basis. As an example of metallurgical process, unsteady one-dimension heat transfer conduction is discussed here and one presents that the difference in variant physical phenomena in a dimensionless normalized coordinate basis depends upon the relationships between those parameters, not upon the equations themselves which describe physical phenomena. If there is an unique relationship between physical phenomena in the real world, then their dimensionless relationship in a dimensionless normalized coordinate basis can be found out. The phenomena with the same model structures are called as homogeneous phenomena. If the values of their characteristic numbers are also equal in homogeneous phenomena, then they belong to similar phenomena.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (200) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频