<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 26 Issue 3
Aug.  2021
Turn off MathJax
Article Contents
LU Yong, XU Jinwu, LI Yourong, YANG Debin. Weak Feature Signals Identification Method Based on Local Projective and Wavelet Transform[J]. Chinese Journal of Engineering, 2004, 26(3): 319-321. doi: 10.13374/j.issn1001-053x.2004.03.024
Citation: LU Yong, XU Jinwu, LI Yourong, YANG Debin. Weak Feature Signals Identification Method Based on Local Projective and Wavelet Transform[J]. Chinese Journal of Engineering, 2004, 26(3): 319-321. doi: 10.13374/j.issn1001-053x.2004.03.024

Weak Feature Signals Identification Method Based on Local Projective and Wavelet Transform

doi: 10.13374/j.issn1001-053x.2004.03.024
  • Received Date: 2003-04-28
    Available Online: 2021-08-16
  • A weak feature signals identification method based on local projection and wavelet transform is introduced. Experiment indicates that the local projective algorithm can separate background signals and weak feature signals into different orthogonal sub-spaces. Wavelet transform is effective for noise reduction of sharp and break signals. The algorithm which combines the local projective and wavelet transform has an excellent effect on identifying weak feature signals in nonlinear time series.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (167) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频