<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 25 Issue 5
Aug.  2021
Turn off MathJax
Article Contents
XU Zhengguang, QU Shoude, YU Lianrong. Self-Learning Pattern Recognition Method Base on the Statistical Space Mapping[J]. Chinese Journal of Engineering, 2003, 25(5): 480-482. doi: 10.13374/j.issn1001-053x.2003.05.050
Citation: XU Zhengguang, QU Shoude, YU Lianrong. Self-Learning Pattern Recognition Method Base on the Statistical Space Mapping[J]. Chinese Journal of Engineering, 2003, 25(5): 480-482. doi: 10.13374/j.issn1001-053x.2003.05.050

Self-Learning Pattern Recognition Method Base on the Statistical Space Mapping

doi: 10.13374/j.issn1001-053x.2003.05.050
  • Received Date: 2002-11-22
    Available Online: 2021-08-17
  • Base on the statistical space mapping a self-learning method was proposed, which can overcome the shortcoming that the measured work-state data can not cover all the data space. Simulating experiment at results for the measured work-state data show its availability.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (202) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频