<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 23 Issue 1
Aug.  2021
Turn off MathJax
Article Contents
CHU Yuanzhang, QI Peng, ZHANG Ya. Performance Forecast of IF Steel Mass-Produced in Bao Steel[J]. Chinese Journal of Engineering, 2001, 23(1): 48-51. doi: 10.13374/j.issn1001-053x.2001.01.040
Citation: CHU Yuanzhang, QI Peng, ZHANG Ya. Performance Forecast of IF Steel Mass-Produced in Bao Steel[J]. Chinese Journal of Engineering, 2001, 23(1): 48-51. doi: 10.13374/j.issn1001-053x.2001.01.040

Performance Forecast of IF Steel Mass-Produced in Bao Steel

doi: 10.13374/j.issn1001-053x.2001.01.040
  • Received Date: 2000-07-04
  • Develop ANN learn-forecast system by employing BP algorithm to forecast the performance of IF steel, test and analyze the system by using data collected from BAO Steel, and compare the precision of forecasted data with that of the multivariant linear regression model. The results show that the relative errors of ANN learn-forecast system on σb,δ1, r and n are all less than 5.0% except that on σ0.2 is 9.0%. It is concluded that this system has a higher forecast precision than the multivariant linear regression model.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (167) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频