<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 22 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
ZHANG Dazhi, CHENG Bingxiang, LI Mouwei, SUN Yikang, GUAN Kezhi. Rolling Force Models of Cold Tandem Rolling Mill Based on Genetic Neural Networks[J]. Chinese Journal of Engineering, 2000, 22(4): 384-388. doi: 10.13374/j.issn1001-053x.2000.04.058
Citation: ZHANG Dazhi, CHENG Bingxiang, LI Mouwei, SUN Yikang, GUAN Kezhi. Rolling Force Models of Cold Tandem Rolling Mill Based on Genetic Neural Networks[J]. Chinese Journal of Engineering, 2000, 22(4): 384-388. doi: 10.13374/j.issn1001-053x.2000.04.058

Rolling Force Models of Cold Tandem Rolling Mill Based on Genetic Neural Networks

doi: 10.13374/j.issn1001-053x.2000.04.058
  • Received Date: 1999-11-18
    Available Online: 2021-08-27
  • Some defects of the traditional rolling force models of cold tandem rolling mill were found out, and new rolling force models based on genetic neural networks were set up. The comparison results of the measured rolling force of cold tandem rolling mill with the calculated value from the traditional models and also with the calculated value from the new rolling force models based on genetic neural netWothe show thatthe calculating precision of the new models is better than that of the traditional models.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (272) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频