<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 13 Issue 2
Oct.  2021
Turn off MathJax
Article Contents
Li Mingchu, Li Zhongxiang. On the Graphs of Ore-Type-(3)-A Result of Win's Conjecture[J]. Chinese Journal of Engineering, 1991, 13(2): 186-190. doi: 10.13374/j.issn1001-053x.1991.02.016
Citation: Li Mingchu, Li Zhongxiang. On the Graphs of Ore-Type-(3)-A Result of Win's Conjecture[J]. Chinese Journal of Engineering, 1991, 13(2): 186-190. doi: 10.13374/j.issn1001-053x.1991.02.016

On the Graphs of Ore-Type-(3)-A Result of Win's Conjecture

doi: 10.13374/j.issn1001-053x.1991.02.016
  • Received Date: 1990-09-11
    Available Online: 2021-10-23
  • It is proved that Win's conjecture is true for k = 3. A better conclusion is obtained. There exist two Hamilton cycles and a 1-factor which are edge-disjoint in a Ore-type-(3) graph of order 2n (n≥10). Moreover, this result is best possible for δ(G)=5.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (232) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频