<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 8 Issue 1
Nov.  2021
Turn off MathJax
Article Contents
Qiao Duan. Variational Principles in Plasticity and Thier Finite Element Formulas[J]. Chinese Journal of Engineering, 1986, 8(1): 135-149. doi: 10.13374/j.issn1001-053x.1986.01.029
Citation: Qiao Duan. Variational Principles in Plasticity and Thier Finite Element Formulas[J]. Chinese Journal of Engineering, 1986, 8(1): 135-149. doi: 10.13374/j.issn1001-053x.1986.01.029

Variational Principles in Plasticity and Thier Finite Element Formulas

doi: 10.13374/j.issn1001-053x.1986.01.029
  • Received Date: 1985-07-12
    Available Online: 2021-11-15
  • In this paper, we first prove the elastic/viscoplastic variational principle and regard the rigid/viscoplastic, elastic-plastic and rigid-plastic va-riational principle as its special case, then derive the finite element formulas.
    The constitutive equations of elastic/viscoplastic material are eq. (2-14), (2-16).
    Suppose the strain-hardening function of material is H=H($\mathop \varepsilon \limits^{\rm{\cdot}} $VP, $\mathop \varepsilon \limits^{\rm{\cdot}} $) then have eq. (2-17).
    Usually, d $\mathop \varepsilon \limits^{\rm{\cdot}} $ is rather small, we can obtain eq. (2-18).Finally, we have eq. (2-22).
    The elastic/viscoplastic variational principle says:Among all the possi-ble vi, $\mathop \varepsilon \limits^{\rm{\cdot}} $ij, the actual solution renders the functional (2-23) a stationary value.
    From dynamic tests at different strain rate, eq. (2-27) is obtained by regression. Work rate functions are eq. (2-28) and (2-29).
    The rigid/viscoplastic conventional variational principle is that among all the possible vi, $\mathop \varepsilon \limits^{\rm{\cdot}} $ij, the actual solution renders the functional (2-23) a stationary value.
    According to the Fig. 3-1, we suppose the stress-strain relations for complicated stress state are eq. (3-5).The work rate functions are eq. (3 -6) and (3-7).The variational principle concerning non-plastic region and unloadingproblems can be discribed as follow:among all the vi, εij, the actual solu-ion renders the functional (2-23) a stationary value.
    Nadai's constitutive equation (4-4) can be extended to elastic-plastic deformation case. We futher define eq. (4-5), and let eq. (4-7), then we obtain eq. (4-8).
    Under the condition of εij<1,wwe obtain eq.(4-9).Since the constitutive equation (4-8) is a homogeneous function of time, the functional (2-23) can be rewritten as eq. (4-10).
    The variational principle of Nadai's deformation theory says. Among all the ui,εij,the actual solution renders the functional (4-10) a stationary value.
    According to the experimental results, a variational principle based on the general functional (2-23) is proved on the some proper handling of the constitutive equations for different materials. Some other variational principle which mentioned above and in our other papers can be regarded as special cases of the variational principle discussed here.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (319) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频