<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 45 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
ZHANG Bolin, HONG Hua, WANG Tianqiu, ZHANG Xinyuan, WU Boyu, LIU Bo, ZHANG Shengen. Progress and prospects of flue gas deNOx technology for the iron and steel industry[J]. Chinese Journal of Engineering, 2023, 45(9): 1602-1612. doi: 10.13374/j.issn2095-9389.2022.11.26.001
Citation: ZHANG Bolin, HONG Hua, WANG Tianqiu, ZHANG Xinyuan, WU Boyu, LIU Bo, ZHANG Shengen. Progress and prospects of flue gas deNOx technology for the iron and steel industry[J]. Chinese Journal of Engineering, 2023, 45(9): 1602-1612. doi: 10.13374/j.issn2095-9389.2022.11.26.001

Progress and prospects of flue gas deNOx technology for the iron and steel industry

doi: 10.13374/j.issn2095-9389.2022.11.26.001
More Information
  • Nitrogen oxides (NOx) are the primary air pollutant in China. The iron and steel industries have become the primary industrial sources of NOx emissions in China. The NOx emissions from iron and steel industries account for 27.3% of all industrial NOx emissions from sources nationwide, surpassing thermal power generation and cement manufacturing. Over the past ten years, China’s iron and steel industry has achieved tremendous results in flue gas desulfurization, but a huge gap in denitrogenate (deNOx) still remains. In 2019, the Ministry of Ecology and Environment and other departments jointly issued “Opinions on Promoting the Implementation of Ultra-low Emission in the Iron and Steel Industry”, which promoted the retrofitting of ultra-low emission in the iron and steel industry. Sintering, pelleting, coking, and other processes are the focus of retrofitting for NOx emissions. Because their low-temperature flue gas contains several contaminants that differ from the flue gas of thermal power plants, they cannot completely copy the existing deNOx technology for the coal-fired boiler flue gas of thermal power plants. At present, selective catalytic reduction (SCR), activated carbon (AC) adsorption catalysis, ozone (O3) oxidation and absorption, and other technologies are used in sintering, pelleting, and coking processes. These technologies have achieved good results. Herein, we investigated the existing flue gas deNOx technologies for sintering, pelleting, and coking processes in iron and steel industries and analyzed the advantages and disadvantages of SCR technology, AC adsorption catalysis, and O3 oxidation and absorption technologies. The SCR technology has high efficiency and reliable performance, but the operation process requires heating of the flue gas, which uses large amounts of blast furnace gas or coking oven gas, and the service life of the catalyst is typically approximately three years. The waste SCR catalysts are recognized as HW50 hazardous waste. AC adsorption catalytic technology can simultaneously desulfurize and deNOx; its operating temperature is low without flue gas reheating. The by-product of H2SO4 can be utilized, and the waste AC produced can be directly used for sintering or coking, while its deNOx efficiency is low. O3 oxidation and absorption technologies have a low initial investment cost and require little floor space. However, their operating cost is relatively high, and the coabsorption of NOx and SO2 makes the desulfurization ash mixed with nitrate, which increases the difficulty of comprehensive utilization. Finally, we analyzed the application possibilities of SCR and other technologies, providing a reference for the development and selection of deNOx technologies for flue gas from the iron and steel industry.

     

  • loading
  • [1]
    Yi H H, Zhong T T, Liu J, et al. Emissions of air pollutants from sintering flue gas in the Beijing-Tianjin-Hebei area and proposed reduction measures. J Clean Prod, 2021, 304: 126958 doi: 10.1016/j.jclepro.2021.126958
    [2]
    張建良, 尉繼勇, 劉征建, 等. 中國鋼鐵工業空氣污染物排放現狀及趨勢. 鋼鐵, 2021, 56(12):1 doi: 10.13228/j.boyuan.issn0449-749x.20210068

    Zhang J L, Yu J Y, Liu Z J, et al. Current situation and trend of air pollutant emission in China’s steel industry. Iron Steel, 2021, 56(12): 1 doi: 10.13228/j.boyuan.issn0449-749x.20210068
    [3]
    Cui L, Ba K M, Li F Q, et al. Life cycle assessment of ultra-low treatment for steel industry sintering flue gas emissions. Sci Total Environ, 2020, 725: 138292 doi: 10.1016/j.scitotenv.2020.138292
    [4]
    田恬, 程茜, 趙雪, 等. 2019年脫硫脫硝行業發展評述及展望. 中國環保產業, 2020(2):23 doi: 10.3969/j.issn.1006-5377.2020.02.007

    Tian T, Cheng Q, Zhao X, et al. Review and prospect of the development of desulfurization and denitration industry in 2019. China Environ Prot Ind, 2020(2): 23 doi: 10.3969/j.issn.1006-5377.2020.02.007
    [5]
    Hu B, Hu P W, Lu B, et al. NOx emission reduction by advanced reburning in grate-rotary kiln for the iron ore pelletizing production. Processes, 2020, 8(11): 1470 doi: 10.3390/pr8111470
    [6]
    Wang Z C, Zhou Z A, Gan M, et al. Process control technology of low NOx sintering based on coke pretreatment. J Cent South Univ, 2020, 27(2): 469 doi: 10.1007/s11771-020-4309-y
    [7]
    Que Z G, Ai X B, Wu S L. Reduction of NOx emission based on optimized proportions of mill scale and coke breeze in sintering process. Int J Miner Metall Mater, 2021, 28(9): 1453 doi: 10.1007/s12613-020-2103-3
    [8]
    于勇, 朱廷鈺, 劉霄龍. 中國鋼鐵行業重點工序煙氣超低排放技術進展. 鋼鐵, 2019, 54(9):1 doi: 10.13228/j.boyuan.issn0449-749x.20190061

    Yu Y, Zhu T Y, Liu X L. Progress of ultra-low emission technology for key processes of iron and steel industry in China. Iron Steel, 2019, 54(9): 1 doi: 10.13228/j.boyuan.issn0449-749x.20190061
    [9]
    龍紅明, 丁龍, 錢立新, 等. 燒結煙氣中NOx和二噁英的減排現狀及發展趨勢. 化工進展, 2022, 41(7):3865

    Long H M, Ding L, Qian L X, et al. Current situation and development trend of NOx and dioxins emission reduction in sintering flue gas. Chem Ind Eng Prog, 2022, 41(7): 3865
    [10]
    郭玉華. 高爐煤氣凈化提質利用技術現狀及未來發展趨勢. 鋼鐵研究學報, 2020, 32(7):525 doi: 10.13228/j.boyuan.issn1001-0963.20190274

    Guo Y H. Current station and tendency of purification and upgrading of blast furnace gas. J Iron Steel Res, 2020, 32(7): 525 doi: 10.13228/j.boyuan.issn1001-0963.20190274
    [11]
    魏前龍, 葛利軍, 劉世聚, 等. 頂燃式懸鏈線熱風爐高風溫低氮燃燒技術. 河北冶金, 2021(2):64 doi: 10.13630/j.cnki.13-1172.2021.0214

    Wei Q L, Ge L J, Liu S J, et al. High air temperature and low nitrogen combustion technology of top burning catenary hot blast stove. Hebei Metall, 2021(2): 64 doi: 10.13630/j.cnki.13-1172.2021.0214
    [12]
    許京銘, 朱繼民, 李新林, 等. 軋鋼加熱爐采用低氮燃燒法降低NOx排放的改造與實踐. 冶金能源, 2021, 40(3):42 doi: 10.3969/j.issn.1001-1617.2021.03.010

    Xu J M, Zhu J M, Li X L, et al. Reformation and practice of low nitrogen combustion method to reduce NOx emission in steel rolling reheating furnace. Energy Metall Ind, 2021, 40(3): 42 doi: 10.3969/j.issn.1001-1617.2021.03.010
    [13]
    董少英, 朱百成. 7m焦爐低氮燃燒新技術及應用. 燃料與化工, 2020, 51(1):50 doi: 10.16044/j.cnki.rlyhg.2020.01.019

    Dong S Y, Zhu B C. New technology of low NOx combustion in 7m battery and its application. Fuel Chem Process, 2020, 51(1): 50 doi: 10.16044/j.cnki.rlyhg.2020.01.019
    [14]
    Zhang B L, Zhang S G, Liu B. Effect of oxygen vacancies on ceria catalyst for selective catalytic reduction of NO with NH3. Appl Surf Sci, 2020, 529: 147068 doi: 10.1016/j.apsusc.2020.147068
    [15]
    Zhang B L, Deng L F, Liu B, et al. Synergistic effect of cobalt and niobium in Co3-Nb-Ox on performance of selective catalytic reduction of NO with NH3. Rare Met, 2022, 41(1): 166 doi: 10.1007/s12598-021-01790-5
    [16]
    趙利明, 梁利生, 蔡嘉, 等. 低溫SCR煙氣脫硝技術在湛江鋼鐵燒結工序的應用. 燒結球團, 2022, 47(5):89 doi: 10.13403/j.sjqt.2022.05.076

    Zhao L M, Liang L S, Cai J, et al. Application of low-temperature SCR flue gas denitrification technology in sintering process of Zhanjiang Iron & Steel. Sintering Pelletizing, 2022, 47(5): 89 doi: 10.13403/j.sjqt.2022.05.076
    [17]
    Zhang S G, Zhang B L, Liu B, et al. A review of Mn-containing oxide catalysts for low temperature selective catalytic reduction of NOx with NH3: Reaction mechanism and catalyst deactivation. RSC Adv, 2017, 7(42): 26226 doi: 10.1039/C7RA03387G
    [18]
    張柏林, 張生楊, 張深根. 稀土元素在脫硝催化劑中的應用. 化學進展, 2022, 34(2):301

    Zhang B L, Zhang S Y, Zhang S G. The use of rare earths in catalysts for selective catalytic reduction of NOx. Prog Chem, 2022, 34(2): 301
    [19]
    Han J, He X, Qin L, et al. NOx removal coupled with energy recovery in sintering plant. Ironmak Steelmak, 2014, 41(5): 350 doi: 10.1179/1743281213Y.0000000158
    [20]
    劉建輝, 范正赟, 程華, 等. 遷鋼球團煙氣超低排放關鍵技術集成與應用. 中國冶金, 2020, 30(10):98 doi: 10.13228/j.boyuan.issn1006-9356.20200464

    Liu J H, Fan Z Y, Cheng H, et al. Integration and application of key technologies for ultra-low emission of flue gas in Qiangang Pelletizing Plant. China Metall, 2020, 30(10): 98 doi: 10.13228/j.boyuan.issn1006-9356.20200464
    [21]
    周茂軍, 張代華. 寶鋼燒結煙氣超低排放技術集成與實踐. 鋼鐵, 2020, 55(2):144

    Zhou M J, Zhang D H. Technology integration and practice of ultra-low emission of sintering flue gas in Baosteel. Iron Steel, 2020, 55(2): 144
    [22]
    張翠. 焦爐煙氣中低溫脫硝工藝的研究與應用. 石油化工建設, 2022, 44(2):13 doi: 10.3969/j.issn.1672-9323.2022.02.005

    Zhang C. Research and application of low temperature denitration process in coke oven flue gas. Pet Chem Constr, 2022, 44(2): 13 doi: 10.3969/j.issn.1672-9323.2022.02.005
    [23]
    李永光, 安璐, 任翠濤, 等. 燒結煙氣低溫SCR脫硝催化劑半工業化試驗. 中國冶金, 2021, 31(2):95

    Li Y G, An L, Ren C T, et al. Semi-industrial test on low temperature SCR denitrification catalyst for sintering flue gas. China Metall, 2021, 31(2): 95
    [24]
    冀崗, 董衛杰, 李強, 等. 太鋼燒結煙氣氮氧化物超低排放技術研究. 燒結球團, 2018, 43(2):67

    Ji G, Dong W J, Li Q, et al. Study on ultra-low emission technology of NOx in Taigang sintering flue gas. Sintering Pelletizing, 2018, 43(2): 67
    [25]
    Zhou H, Ma P N, Lai Z Y, et al. Harmless treatment of waste selective catalytic reduction catalysts during iron ore sintering process. J Clean Prod, 2020, 275: 122954 doi: 10.1016/j.jclepro.2020.122954
    [26]
    Liu X L, Guo J X, Chu Y H, et al. Desulfurization performance of iron supported on activated carbon. Fuel, 2014, 123: 93 doi: 10.1016/j.fuel.2014.01.068
    [27]
    高繼賢, 劉靜, 曾艷, 等. 活性焦(炭)干法燒結煙氣凈化技術在鋼鐵行業的應用與分析(Ⅰ)——工藝與技術經濟分析. 燒結球團, 2012, 37(1):65 doi: 10.3969/j.issn.1000-8764.2012.01.017

    Gao J X, Liu J, Zeng Y, et al. Application and analysis of dry activated coke(carbon) sintering flue gas purification technology in iron and steel industry—Process and technical and economical analysis. Sintering Pelletizing, 2012, 37(1): 65 doi: 10.3969/j.issn.1000-8764.2012.01.017
    [28]
    Wang J J, Wang Y J, She X F, et al. Numerical study on the distribution of flue gas residence time in the desulfurization and denitrification system by the optimization of the model. Int J Chem React Eng, 2022, 20(10): 1095 doi: 10.1515/ijcre-2022-0043
    [29]
    Wu S L, Zhang W L, Hu Z J. Properties change of activated coke for sintering flue gas purification in cyclic removal of SO2 and NOx. J Iron Steel Res Int, 2021, 28(6): 641 doi: 10.1007/s42243-020-00486-x
    [30]
    解煒, 李小亮, 陸曉東, 等. 煙氣凈化用活性炭脫硫脫硝機理研究與發展趨勢. 潔凈煤技術, 2021, 27(6):1

    Xie W, Li X L, Lu X D, et al. Mechanism and development trend of desulfurization & denitrification of activated carbon used in flue gas purification. Clean Coal Technol, 2021, 27(6): 1
    [31]
    向思羽, 張朝暉, 邢相棟, 等. 燒結煙氣脫硫脫硝活性炭的研究進展[J/OL]. 鋼鐵研究學報 (2022-07-14) [2022-11-26]. https://kns.cnki.net/kcms/detail/11.2133.tf.20220713.0956.002.html

    Xiang S Y, Zhang Z H, Xing X D, et al. Research progress of activated carbon for desulfurization and denitrification of sintering flue gas [J/OL]. J Iron Steel Res (2022-07-14) [2022-11-26]. https://kns.cnki.net/kcms/detail/11.2133.tf.20220713.0956.002.html
    [32]
    韓健, 閻占海, 邵久剛. 逆流式活性炭煙氣脫硫脫硝技術特點及應用. 燒結球團, 2018, 43(6):13

    Han J, Yan Z H, Shao J G. Technical characteristics of counter flow active carbon-flue gas desulphurization and denitrification process and its application. Sintering Pelletizing, 2018, 43(6): 13
    [33]
    郭雅楠. 活性炭脫硫脫硝技術在焦爐煙氣中的應用. 內蒙古煤炭經濟, 2022(12):115 doi: 10.3969/j.issn.1008-0155.2022.12.039

    Guo Y N. Application of activated carbon desulfurization and denitrification technology in coke oven flue gas. Inner Mongolia Coal Econ, 2022(12): 115 doi: 10.3969/j.issn.1008-0155.2022.12.039
    [34]
    簡科, 劉睿, 王大春. 活性炭一體化脫硫脫硝在武鋼焦化的應用 // 2020年(第十四屆)焦化節能環保及干熄焦技術研討會. 泰安, 2020: 141

    Jian K, Liu R, Wang D C. Application of activated carbon integrated desulfurization and denitrification in WISCO Coking // Proceedings of the 14th Symposium (2020) on Energy Conservation & Environment Protection and CDQ Technology in Coking Industry. Taian, 2020: 141
    [35]
    韓礦, 曹紀剛, 向海飛, 等. 活性炭脫硫脫硝技術在安鋼焦化廠的應用. 河南化工, 2020, 37(3):37

    Han K, Cao J G, Xiang H F, et al. Application of activated carbon desulfurization and denitrification technology in coking plant of Anyang steel. Henan Chem Ind, 2020, 37(3): 37
    [36]
    傅文娟, 傅月梅. 活性焦脫硫脫硝技術在燒結煙氣工程上的應用. 山東化工, 2015, 44(22):178 doi: 10.3969/j.issn.1008-021X.2015.22.070

    Fu W J, Fu Y M. Application of activated coke desulfurization and denitrification technology in sintering flue gas engineering. Shandong Chem Ind, 2015, 44(22): 178 doi: 10.3969/j.issn.1008-021X.2015.22.070
    [37]
    江靜, 李強, 鄧成豪, 等. 兩種脫硫脫硝技術在馬鋼的應用. 燃料與化工, 2022, 53(1):63 doi: 10.3969/j.issn.1001-3709.2022.1.rlyhg202201023

    Jiang J, Li Q, Deng C H, et al. Application of different DeSOx and DeNOx technologies on Masteel coke plant. Fuel Chem Process, 2022, 53(1): 63 doi: 10.3969/j.issn.1001-3709.2022.1.rlyhg202201023
    [38]
    Rovira M, Engvall K, Duwig C. Detailed numerical simulations of low-temperature oxidation of NOx by ozone. Fuel, 2021, 303: 121238 doi: 10.1016/j.fuel.2021.121238
    [39]
    紀瑞軍, 徐文青, 王健, 等. 臭氧氧化脫硝技術研究進展. 化工學報, 2018, 69(6):2353

    Ji R J, Xu W Q, Wang J, et al. Research progress of ozone oxidation denitrification technology. CIESC J, 2018, 69(6): 2353
    [40]
    Zou Y, Liu X L, Zhu T Y, et al. Simultaneous removal of NOx and SO2 by MgO combined with O3 oxidation: The influencing factors and O3 consumption distributions. ACS Omega, 2019, 4(25): 21091 doi: 10.1021/acsomega.9b02502
    [41]
    Yamamoto Y, Yamamoto H, Takada D, et al. Simultaneous removal of NOx and SOx from flue gas of a glass melting furnace using a combined ozone injection and semi-dry chemical process. Ozone:Sci Eng, 2016, 38(3): 211 doi: 10.1080/01919512.2015.1115335
    [42]
    Mok Y S, Lee H J. Removal of sulfur dioxide and nitrogen oxides by using ozone injection and absorption-reduction technique. Fuel Process Technol, 2006, 87(7): 591 doi: 10.1016/j.fuproc.2005.10.007
    [43]
    楊穎欣, 薛學良, 劉勇, 等. 鋼鐵燒結煙氣臭氧氧化脫硝正交實驗研究. 環境科學與技術, 2018, 41(增刊 1):139

    Yang Y X, Xue X L, Liu Y, et al. Orthogonal experiments on ozonation denitration of iron-steel sintering flue gas. Environ Sci Technol, 2018, 41(Suppl 1): 139
    [44]
    范博, 孟宇, 孫宇航. 基于密相半干法脫硫工藝的氧化脫硝技術及應用. 冶金管理, 2020(21):33

    Fan B, Meng Y, Sun Y H. Oxidation denitration technology and application based on dense phase semi dry desulfurization process. China Steel Focus, 2020(21): 33
    [45]
    郭厚焜. 180 m2燒結機煙氣COA協同脫硝技術及應用. 節能與環保, 2018(3):68 doi: 10.3969/j.issn.1009-539X.2018.03.018

    Guo H K. Co-denitration technology and application of COA in flue gas of 180 m2 sintering machine. Energy Conserv Environ Prot, 2018(3): 68 doi: 10.3969/j.issn.1009-539X.2018.03.018
    [46]
    鐘璐, 胡小吐, 朱天樂, 等. 臭氧氧化協同吸收脫硫脫硝技術的工業應用. 中國環保產業, 2021(7):46 doi: 10.3969/j.issn.1006-5377.2021.07.013

    Zhong L, Hu X T, Zhu T L, et al. Industrial application of the ozone oxidation and synergistic absorption technology for desulfurization and denitration. China Environ Prot Ind, 2021(7): 46 doi: 10.3969/j.issn.1006-5377.2021.07.013
    [47]
    王天廣. 燒結煙氣SCR脫硝與COA臭氧協同脫硝工藝對比分析. 科學技術創新, 2020(6):13 doi: 10.3969/j.issn.1673-1328.2020.06.008

    Wang T G. Comparative analysis of SCR denitrification and COA ozone synergistic denitrification process for sintering flue gas. Sci Technol Innov, 2020(6): 13 doi: 10.3969/j.issn.1673-1328.2020.06.008
    [48]
    世界金屬導報. 2021年我國煉鐵技術發展評述[J/OL]. 我的鋼鐵 (2022-03-14) [2022-11-26]. https://news.mysteel.com/22/0314/17/C69D408F112D28783.html

    World Metals. Review of China's ironmaking technology development in 2021[J/OL]. Mysteel (2022-03-14) [2022-11-26]. https://news.mysteel.com/22/0314/17/C69D408F112D28783.html
    [49]
    溫斌, 宋寶華, 孫國剛, 等. 鋼鐵燒結煙氣脫硝技術進展. 環境工程, 2017, 35(1):103

    Wen B, Song B H, Sun G G, et al. Technical progress of denitration for iron-steel sintering flue gas. Environ Eng, 2017, 35(1): 103
    [50]
    姚國建, 韋鳴瑞, 柳建龍, 等. 球團豎爐煙氣脫硫工程應用研究. 工業安全與環保, 2005, 31(4):38 doi: 10.3969/j.issn.1001-425X.2005.04.016

    Yao G J, Wei M R, Liu J L, et al. Application researches on ball group vertical stove desulphurization project. Ind Saf Dust Control, 2005, 31(4): 38 doi: 10.3969/j.issn.1001-425X.2005.04.016
    [51]
    喬建芬. 焦爐煙氣脫硫脫硝技術及產業化應用進展. 天然氣化工(C1化學與化工), 2020, 45(4):130

    Qiao J F. Technology development and industry application progress of desulfurization and denitrification from coke oven flue gas. Nat Gas Chem Ind, 2020, 45(4): 130
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(3)  / Tables(4)

    Article views (315) PDF downloads(82) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频