Citation: | BAI Peirui, WANG Rui, LIU Qingyi, HAN Chao, DU Hongxuan, XUANYUAN Mengyu, FU Yingxia. DS-YOLOv5: A real-time detection and recognition model for helmet wearing[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.11.11.006 |
[1] |
劉曉慧, 葉西寧. 膚色檢測和Hu矩在安全帽識別中的應用. 華東理工大學學報(自然科學版), 2014, 40(3):365
Liu X H, Ye X N. Skin color detection and hu moments in helmet recognition research. J East China Univ Sci Technol (Nat Sci Ed), 2014, 40(3): 365
|
[2] |
Li K, Zhao X G, Bian J, et al. Automatic safety helmet wearing detection // 2017 IEEE 7th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). Honolulu, 2017: 617
|
[3] |
張立藝, 武文紅, 牛恒茂, 等. 深度學習中的安全帽檢測算法應用研究綜述. 計算機工程與應用, 2022, 58(16):1
Zhang L Y, Wu W H, Niu H M, et al. Summary of application research on helmet detection algorithm based on deep learning. Comput Eng Appl, 2022, 58(16): 1
|
[4] |
Yogameena B, Menaka K, Saravana Perumaal S. Deep learning-based helmet wear analysis of a motorcycle rider for intelligent surveillance system. IET Intell Transp Syst, 2019, 13(7): 1190 doi: 10.1049/iet-its.2018.5241
|
[5] |
Ferdous M, Masudul Ahsan S M. Multi-scale safety hardhat wearing detection using deep learning: A top-down and bottom-up module // 2021 International Conference on Electrical, Communication, and Computer Engineering (ICECCE ). Kuala Lumpur, 2021: 1
|
[6] |
Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector // European Conference on Computer Vision. Amsterdam, 2016: 21
|
[7] |
Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection // 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, 2016: 779
|
[8] |
Wu J X, Cai N, Chen W J, et al. Automatic detection of hardhats worn by construction personnel: A deep learning approach and benchmark dataset. Autom Constr, 2019, 106: 102894 doi: 10.1016/j.autcon.2019.102894
|
[9] |
徐先峰, 趙萬福, 鄒浩泉, 等. 基于MobileNet-SSD的安全帽佩戴檢測算法. 計算機工程, 2021, 47(10):298
Xu X F, Zhao W F, Zou H Q, et al. Detection algorithm of safety helmet wear based on MobileNet-SSD. Comput Eng, 2021, 47(10): 298
|
[10] |
Redmon J, Farhadi A. Yolov3: An incremental improvement [J/OL]. arXiv eprints (2018-4-8) [2022-11-11]. https://arxiv.org/abs/1804.02767
|
[11] |
Bochkovskiy A, Wang C Y, Liao H Y M. YOLOv4: Optimal speed and accuracy of object detection [J/OL]. arXiv (2020-4-23) [2022-11-11]. https://arxiv.org/abs/2004.10934
|
[12] |
Ultralytics. yolov5 [DB/OL]. Ultralytics (2023)[2022-11-11] https://github.com/ultralytics/yolov5
|
[13] |
趙睿, 劉輝, 劉沛霖, 等. 基于改進YOLOv5s的安全帽檢測算法. 北京航空航天大學學報, 2021:1
Zhao R, Liu H, Liu P L, et al. Research on safety helmet detection algorithm based on improved YOLOv5s. J B Univ Aeronaut Astronaut, 2021: 1
|
[14] |
岳衡, 黃曉明, 林明輝, 等. 基于改進YOLOv5的安全帽佩戴檢測. 計算機與現代化, 2022(6):104
Yue H, Huang X M, Lin M H, et al. Helmet-wearing detection based on improved YOLOv5. Comput Mod, 2022(6): 104
|
[15] |
黃林泉, 蔣良衛, 高曉峰. 改進YOLOv3的實時性視頻安全帽佩戴檢測算法. 現代計算機, 2020(30):32
Huang L Q, Jiang L W, Gao X F. Improved algorithm of YOLOv3 for real-time helmet wear detection in videos. Mod Comput, 2020(30): 32
|
[16] |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need // Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, 2017: 6000
|
[17] |
Zhu X K, Lyu S C, Wang X, et al. TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios [J/OL]. arXiv (2021-8-26) [2022-11-11]. https://arxiv.org/abs/2108.11539
|
[18] |
He K M, Zhang X Y, Ren S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans Pattern Anal Mach Intell, 2015, 37(9): 1904 doi: 10.1109/TPAMI.2015.2389824
|
[19] |
Liu S, Qi L, Qin H F, et al. Path aggregation network for instance segmentation // 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 8759
|
[20] |
Wojke N, Bewley A, Paulus D. Simple online and realtime tracking with a deep association metric // 2017 IEEE International Conference on Image Processing (ICIP). Beijing, 2017: 3645
|
[21] |
Kalman R E. A new approach to linear filtering and prediction problems. J Basic Eng, 1960, 82(1): 35 doi: 10.1115/1.3662552
|
[22] |
Zheng Z H, Wang P, Liu W, et al. Distance-IoU loss: Faster and better learning for bounding box regression. Proc AAAI Conf Artif Intell, 2020, 34(7): 12993
|
[23] |
Carion N, Massa F, Synnaeve G, et al. End-to-end object detection with transformers // European Conference on Computer Vision. Glasgow, 2020: 213
|
[24] |
Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: Transformers for image recognition at scale [J/OL]. arXiv (2021-6-3) [2022-11-11]. https://arxiv.org/abs/2010.11929
|
[25] |
Tan M X, Pang R M, Le Q V. EfficientDet: scalable and efficient object detection // 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, 2020: 10778
|
[26] |
Zheng L, Shen L Y, Tian L, et al. Scalable person re-identification: A benchmark // 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, 2015: 1116
|
[27] |
Milan A, Leal-Taixé L, Reid I, et al. MOT16: A benchmark for multi-object tracking [J/OL]. arXiv eprints (2016-5-3) [2022-11-11]. https://ui.adsabs.harvard.edu/abs/2016arXiv160300831M
|
[28] |
呂志軒, 魏霞, 馬志鋼. 改進YOLOX的輕量級安全帽檢測方法. 計算機工程與應用, 2022, 59(1):61
Lv Z X, Wei X, Ma Z G. Improve the lightweight safety helmet detection method of YOLOX. Comput Eng Appl, 2022, 59(1): 61
|
[29] |
王建波, 武友新. 改進YOLOv4-tiny 的安全帽佩戴檢測算法. 計算機工程與應用. 2023, 59(4):183
Wang J B, Wu Y X. Helmet wearing detection algorithm of improved YOLOV4-tiny, Comput Eng Appl, 2023, 59(4): 183
|