Citation: | DU Changhai, LI Dongyang, ZHU Benyin, LI Yimin, LUO Fenghua. High-strength porous Ni–Ti shape-memory alloys with stabilized high-stress cyclic properties[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.10.10.003 |
[1] |
Bansiddhi A, Sargeant T D, Stupp S I, et al. Porous NiTi for bone implants: A review. Acta Biomater, 2008, 4(4): 773 doi: 10.1016/j.actbio.2008.02.009
|
[2] |
Zhang Y T, Liu J, Wang L Q, et al. Porous NiTiNb alloys with superior strength and ductility induced by modulating eutectic microregion. Acta Mater, 2022, 239: 118295 doi: 10.1016/j.actamat.2022.118295
|
[3] |
Liu G, Zhang X F, Chen X L, et al. Additive manufacturing of structural materials. Mater Sci Eng, 2021, 145: 100596 doi: 10.1016/j.mser.2020.100596
|
[4] |
Greiner C, Oppenheimer S M, Dunand D C. High strength, low stiffness, porous NiTi with superelastic properties. Acta Biomater, 2005, 1(6): 705 doi: 10.1016/j.actbio.2005.07.005
|
[5] |
Elahinia M H, Hashemi M, Tabesh M, et al. Manufacturing and processing of NiTi implants: A review. Prog Mater Sci, 2012, 57(5): 911 doi: 10.1016/j.pmatsci.2011.11.001
|
[6] |
du Plessis A, Razavi S M J, Benedetti M, et al. Properties and applications of additively manufactured metallic cellular materials: A review. Prog Mater Sci, 2022, 125: 100918 doi: 10.1016/j.pmatsci.2021.100918
|
[7] |
Wisutmethangoon S, Denmud N, Sikong L. Characteristics and compressive properties of porous NiTi alloy synthesized by SHS technique. Mater Sci Eng A, 2009, 515(1?2): 93 doi: 10.1016/j.msea.2009.02.055
|
[8] |
Tang C Y, Zhang L N, Wong C T, et al. Fabrication and characteristics of porous NiTi shape memory alloy synthesized by microwave sintering. Mater Sci Eng A, 2011, 528(18): 6006 doi: 10.1016/j.msea.2011.04.040
|
[9] |
Zhang L, Zhang Y Q, Jiang Y H, et al. Superelastic behaviors of biomedical porous NiTi alloy with high porosity and large pore size prepared by spark plasma sintering. J Alloys Compd, 2015, 644: 513 doi: 10.1016/j.jallcom.2015.05.063
|
[10] |
Bansiddhi A, Dunand D C. Shape-memory NiTi foams produced by replication of NaCl space-holders. Acta Biomater, 2008, 4(6): 1996 doi: 10.1016/j.actbio.2008.06.005
|
[11] |
Li D S, Zhang Y P, Ma X, et al. Space-holder engineered porous NiTi shape memory alloys with improved pore characteristics and mechanical properties. J Alloys Compd, 2009, 474(1?2): L1 doi: 10.1016/j.jallcom.2008.06.043
|
[12] |
K?hl M, Habijan T, Bram M, et al. Powder metallurgical near-net-shape fabrication of porous NiTi shape memory alloys for use as long-term implants by the combination of the metal injection molding process with the space-holder technique. Adv Eng Mater, 2009, 11(12): 959
|
[13] |
Zhao M, Qing H B, Wang Y X, et al. Superelastic behaviors of additively manufactured porous NiTi shape memory alloys designed with Menger sponge-like fractal structures. Mater Des, 2021, 200: 109448 doi: 10.1016/j.matdes.2021.109448
|
[14] |
Khanlari K, Ramezani M, Kelly P, et al. Mechanical and microstructural characteristics of as-sintered and solutionized porous 60NiTi. Intermetallics, 2018, 100: 32 doi: 10.1016/j.intermet.2018.06.001
|
[15] |
Zhu S L, Yang X J, Fu D H, et al. Stress-strain behavior of porous NiTi alloys prepared by powders sintering. Mater Sci Eng A, 2005, 408(1?2): 264 doi: 10.1016/j.msea.2005.08.012
|
[16] |
Xu J L, Bao L Z, Liu A H, et al. Effect of pore sizes on the microstructure and properties of the biomedical porous NiTi alloys prepared by microwave sintering. J Alloys Compd, 2015, 645: 137 doi: 10.1016/j.jallcom.2015.05.006
|
[17] |
Chu C L, Chung C Y, Lin P H, et al. Fabrication and properties of porous NiTi shape memory alloys for heavy load-bearing medical applications. J Mater Process Technol, 2005, 169(1): 103 doi: 10.1016/j.jmatprotec.2005.03.002
|
[18] |
Rahim M, Frenzel J, Frotscher M, et al. Impurity levels and fatigue lives of pseudoelastic NiTi shape memory alloys. Acta Mater, 2013, 61(10): 3667 doi: 10.1016/j.actamat.2013.02.054
|
[19] |
Bram M, K?hl M, Buchkremer H P, et al. Mechanical properties of highly porous NiTi alloys. J Materi Eng Perform, 2011, 20(4): 522
|
[20] |
Whitney M, Corbin S F, Gorbet R B. Investigation of the mechanisms of reactive sintering and combustion synthesis of NiTi using differential scanning calorimetry and microstructural analysis. Acta Mater, 2008, 56(3): 559 doi: 10.1016/j.actamat.2007.10.012
|
[21] |
Whitney M, Corbin S F, Gorbet R B. Investigation of the influence of Ni powder size on microstructural evolution and the thermal explosion combustion synthesis of NiTi. Intermetallics, 2009, 17(11): 894 doi: 10.1016/j.intermet.2009.03.018
|
[22] |
Chen G, Liss K D, Cao P. In situ observation and neutron diffraction of NiTi Powder sintering. Acta Mater, 2014, 67: 32 doi: 10.1016/j.actamat.2013.12.013
|
[23] |
Taheri Andani M, Saedi S, Turabi A S, et al. Mechanical and shape memory properties of porous Ni50.1Ti49.9 alloys manufactured by selective laser melting. J Mech Behav Biomed Mater, 2017, 68: 224
|
[24] |
Wu Z G, Mahmud A, Zhang J S, et al. Surface oxidation of NiTi during thermal exposure in flowing argon environment. Mater Des, 2018, 140: 123 doi: 10.1016/j.matdes.2017.11.061
|
[25] |
Lu H Z, Ma H W, Cai W S, et al. Stable tensile recovery strain induced by a Ni4Ti3 nanoprecipitate in a Ni50.4Ti49.6 shape memory alloy fabricated via selective laser melting. Acta Mater, 2021, 219: 117261
|
[26] |
Zhou Y H, Yao X Y, Lu W F, et al. Heat treatment of hot-isostatic-pressed 60NiTi shape memory alloy: Microstructure, phase transformation and mechanical properties. J Mater Sci Technol, 2022, 107: 124 doi: 10.1016/j.jmst.2021.10.005
|
[27] |
Li D Y, He H, Lou J, et al. Local formation of Ni4Ti3 in non-equilibrium state and its influence on the transformation temperature of Ti-rich NiTi alloys. J Alloys Compd, 2021, 852: 157065 doi: 10.1016/j.jallcom.2020.157065
|
[28] |
Frenzel J, George E P, Dlouhy A, et al. Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater, 2010, 58(9): 3444 doi: 10.1016/j.actamat.2010.02.019
|
[29] |
Xue D Q, Zhou Y M, Ren X B. The effect of aging on the B2-R transformation behaviors in Ti–51at%Ni alloy. Intermetallics, 2011, 19(11): 1752 doi: 10.1016/j.intermet.2011.07.014
|
[30] |
Kim J I, Liu Y N, Miyazaki S. Ageing-induced two-stage R-phase transformation in Ti–50. 9at. %Ni. Acta Mater, 2004, 52(2): 487 doi: 10.1016/j.actamat.2003.09.032
|
[31] |
Zhu J M, Wu H H, Wu Y, et al. Influence of Ni4Ti3 precipitation on martensitic transformations in NiTi shape memory alloy: R phase transformation. Acta Mater, 2021, 207: 116665 doi: 10.1016/j.actamat.2021.116665
|
[32] |
Li Z, Xiao F, Chen H, et al. Atomic scale modeling of the coherent strain field surrounding Ni4Ti3 precipitate and its effects on thermally-induced martensitic transformation in a NiTi alloy. Acta Mater, 2021, 211: 116883 doi: 10.1016/j.actamat.2021.116883
|
[33] |
Khalil-Allafi J, Dlouhy A, Eggeler G. Ni4Ti3-precipitation during aging of NiTi shape memory alloys and its influence on martensitic phase transformations. Acta Mater, 2002, 50(17): 4255 doi: 10.1016/S1359-6454(02)00257-4
|
[34] |
Huo X Y, Chen P, Lahkar S, et al. Occurrence of the R-phase with increased stability induced by low temperature precipitate-free aging in a Ni50.9Ti49.1 alloy. Acta Mater, 2022, 227: 117688
|
[35] |
?pek Naka? G, Dericio?lu A F, Bor ?. Monotonic and cyclic compressive behavior of superelastic TiNi foams processed by sintering using magnesium space holder technique. Mater Sci Eng A, 2013, 582: 140 doi: 10.1016/j.msea.2013.06.011
|
[36] |
Peng W L, Liu K, Ali Shah B, et al. Enhanced internal friction and specific strength of porous TiNi shape memory alloy composite by the synergistic effect of pore and Ti2Ni. J Alloys Compd, 2020, 816: 152578 doi: 10.1016/j.jallcom.2019.152578
|
[37] |
Xu J L, Bao L Z, Liu A H, et al. Microstructure, mechanical properties and superelasticity of biomedical porous NiTi alloy prepared by microwave sintering. Mater Sci Eng C, 2015, 46: 387 doi: 10.1016/j.msec.2014.10.053
|
[38] |
Cluff D R, Corbin S F, Gharghouri M A. Investigating the influence of Ti powder purity on phase evolution during NiTi sintering using in situ neutron diffraction. Intermetallics, 2017, 83: 43 doi: 10.1016/j.intermet.2016.12.001
|
[39] |
Wang X B, Pu Z, Yang Q, et al. Improved functional stability of a coarse-grained Ti–50. 8?at. % Ni shape memory alloy achieved by precipitation on dislocation networks. Scr Mater, 2019, 163: 57
|
[40] |
Chen H, Xiao F, Liang X, et al. Improvement of the stability of superelasticity and elastocaloric effect of a Ni-rich Ti–Ni alloy by precipitation and grain refinement. Scr Mater, 2019, 162: 230 doi: 10.1016/j.scriptamat.2018.11.024
|
[41] |
Gao Y, Casalena L, Bowers M L, et al. An origin of functional fatigue of shape memory alloys. Acta Mater, 2017, 126: 389 doi: 10.1016/j.actamat.2017.01.001
|
[42] |
Yu B Q, Yuan W H, Xu Q, et al. Comparison of nickle release and cytocompatibility between porous and dense NiTi alloy. Trans Nonferrous Met Soc China, 2021, 31(12): 3814 doi: 10.1016/S1003-6326(21)65766-7
|
[43] |
Chmielewska A, Dobkowska A, Kijeńska-Gawrońska E, et al. Biological and corrosion evaluation of in situ alloyed NiTi fabricated through laser powder bed fusion (LPBF). Int J Mol Sci, 2021, 22(24): 13209 doi: 10.3390/ijms222413209
|
[44] |
Hang R Q, Liu Y L, Liu S, et al. Size-dependent corrosion behavior and cytocompatibility of Ni–Ti–O nanotubes prepared by anodization of biomedical NiTi alloy. Corros Sci, 2016, 103: 173 doi: 10.1016/j.corsci.2015.11.016
|
[45] |
?ev?íková J, Bártková D, Goldbergová M, et al. On the Ni–Ion release rate from surfaces of binary NiTi shape memory alloys. Appl Surf Sci, 2018, 427: 434 doi: 10.1016/j.apsusc.2017.08.235
|