<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Turn off MathJax
Article Contents
ZHANG Bolin, ZHANG Shengyang, WU Boyu, LIU Bo, ZHANG Shengen. Progress in resource utilization of waste wind turbine blades[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.10.10.002
Citation: ZHANG Bolin, ZHANG Shengyang, WU Boyu, LIU Bo, ZHANG Shengen. Progress in resource utilization of waste wind turbine blades[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.10.10.002

Progress in resource utilization of waste wind turbine blades

doi: 10.13374/j.issn2095-9389.2022.10.10.002
More Information
  • The large-scale utilization of wind energy is the key to establishing a modern energy system, an essential prerequisite for achieving carbon peaking and neutrality as planned, and an essential support for quality economic and social development. The installed wind power capacity continues to grow in China; by the end of 2022, the number of installed wind turbines had surpassed more than 170000 sets, and that of the cumulative installed blades had surpassed 3.65 million tons. Accordingly, early wind turbines are being decommissioned. The use of end-of-life wind turbine blades as a resource presents numerous challenges, such as disassembly- and degradation-related issues. Therefore, there is an urgent need to investigate green and high-value utilization technology paths capable of large-scale consumption to support the green and sustainable development of the wind power industry. This review examines the wind power industry and the growth trend of end-of-life wind turbines in China, outlines the main technical pathways of waste wind blade resource utilization, and highlights several waste wind blade resource utilization methods. ① Mechanical, thermal, and chemical recycling methods for fiber-reinforced composites: Mechanical recycling is a simple and traditional pathway that cannot provide long-scale fibers, thermal recycling damages the mechanical properties of long-scale fibers and makes reusing the matrix resin difficult, and chemical recycling preserves the mechanical properties of long-scale fibers and allows for the reuse of the matrix resin but at a high cost. Therefore, to achieve the sustainable reuse of reinforcing fibers and matrix resin, further research on the low-cost recycling method for fiber-reinforced composites from waste wind turbine blades is required. ② Application of waste blades in concrete and other construction materials: The blade, when cut into small pieces, can be used to replace natural aggregates in concrete materials. However, its organic components are not conducive to cement hydration, nor are the low-strength filler materials, such as balsa wood, conducive to the structural strength of concrete. ③ Structural utilization of waste blades: Waste blades can have structural reuse applications in pedestrian bridges, park benches, playground facilities, bus stops, and house roofs. Although reuse is simple and feasible, the blade materials need to be rendered nonhazardous and resourceful after the reuse cycle. This review compares and analyzes the benefits and drawbacks of various technical solutions to provide a reference for future research on the utilization of waste wind turbine blades.

     

  • loading
  • [1]
    舟丹. 以能源結構轉型推動我國實現“碳中和”. 中外能源, 2022, 27(4):61

    Zhou D. Promoting China’s “carbon neutrality” with the transformation of energy structure. Sino Glob Energy, 2022, 27(4): 61
    [2]
    柳亞琴, 孫薇, 朱治雙. 碳市場對能源結構低碳轉型的影響及作用路徑. 中國環境科學, 2022, 42(9):4369

    Liu Y Q, Sun W, Zhu Z S. The impact of carbon market on the low-carbon transition of energy mix and its action path. China Environ Sci, 2022, 42(9): 4369
    [3]
    Bp. Bp statistical review of world energy June 2022 [J/OL]. bp p. l. c. (2022-06-26) [2022-10-09]. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/xlsx/energy-economics/statistical-review/bp-stats-review-2022-all-data.xlsx
    [4]
    Ren G R, Wan J, Liu J F, et al. Characterization of wind resource in China from a new perspective. Energy, 2019, 167: 994 doi: 10.1016/j.energy.2018.11.032
    [5]
    朱蓉, 王陽, 向洋, 等. 中國風能資源氣候特征和開發潛力研究. 太陽能學報, 2021, 42(6):409

    Zhu R, Wang Y, Xiang Y, et al. Stydy on climate characteristics and development potential of wind energy resources in China. Acta Energiae Solaris Sin, 2021, 42(6): 409
    [6]
    我國中長期發電能力和電力需求發展預測. 資源與人居環境. 2013(3):41

    China's medium and long-term power generation capacity and electricity demand development forecast. Resources and Habitant Environment, 2013(3): 41
    [7]
    Feng Y, Lin H Y, Ho S L, et al. Overview of wind power generation in China: Status and development. Renew Sustain Energy Rev, 2015, 50: 847 doi: 10.1016/j.rser.2015.05.005
    [8]
    Cheng M, Zhu Y. The state of the art of wind energy conversion systems and technologies: A review. Energy Convers Manag, 2014, 88: 332 doi: 10.1016/j.enconman.2014.08.037
    [9]
    喬印虎, 韓江, 張春燕, 等. 擾電/壓電復合材料風力機葉片振動主動控制實驗研究. 太陽能學報, 2017, 38(9):2559

    Qiao Y H, Han J, Zhang C Y, et al. Experimental tests of active vibration control for flexoelectric/piezoelectric composite wind turbine blade. Acta Energiae Solaris Sin, 2017, 38(9): 2559
    [10]
    胡蓓, 吳永康, 郭子君, 等. 風力發電葉片裂縫監測技術綜述. 高壓電器, 2022, 58(7):93

    Hu B, Wu Y K, Guo Z J, et al. Review of wind turbine blade crack monitoring technology. High Volt Apparatus, 2022, 58(7): 93
    [11]
    石可重, 趙曉路, 徐建中. 大型風電機組葉片疲勞試驗研究. 太陽能學報, 2011, 32(8):1264

    Shi K Z, Zhao X L, Xu J Z. Research on fatigue test of large horizontal axis wind turbine blade. Acta Energiae Solaris Sin, 2011, 32(8): 1264
    [12]
    沈德昌. 回望我國第一座陸上風電場. 太陽能, 2019(2):35 doi: 10.3969/j.issn.1003-0417.2019.02.007

    Shen D C. Review of China’s first onshore wind farm. Sol Energy, 2019(2): 35 doi: 10.3969/j.issn.1003-0417.2019.02.007
    [13]
    劉勝強, 賀升, 周益輝, 等. 風電葉片廢棄物回收技術綜述. 中國資源綜合利用, 2021, 39(11):109

    Liu S Q, He S, Zhou Y H, et al. Overview of wind turbine blade waste recovery technology. China Resour Compr Util, 2021, 39(11): 109
    [14]
    國家統計局. 年度數據-電力平衡表[J/OL]. 國家統計局(2022) [2022-10-10]. https://data.stats.gov.cn/easyquery.htm?cn=C01

    National Bureau of Statistics. Annual data - electricity balance sheet [J/OL]. National Bureau of Statistics (2022) [2022-10-10]. https://data.stats.gov.cn/easyquery.htm?cn=C01
    [15]
    中國電力企業聯合會. 電力工業統計基本數據一覽表. (2013-04-19) [2022-10-10]. https://cec.org.cn/detail/index.html?3-126869

    China Electricity Council. List of basic data of electricity industry statistics. (2013-04-19) [2022-10-10]. https://cec.org.cn/detail/index.html?3-126869
    [16]
    中國可再生能源學會風能專業委員會. 2021年中國風電吊裝容量統計簡報. 風能, 2022(5):38

    Wind Energy Association of China Renewable Energy Society. Statistical brief report of wind power hoisting capacity in China in 2021. Wind Energy, 2022(5): 38
    [17]
    Tahir M, Rahimizadeh A, Kalman J, et al. Experimental and analytical investigation of 3D printed specimens reinforced by different forms of recyclates from wind turbine waste. Polym Compos, 2021, 42(9): 4533 doi: 10.1002/pc.26166
    [18]
    馬志勇. 大型風電葉片結構設計方法研究. 北京:華北電力大學, 2011

    Ma Z Y. Research on Large-Scale Wind Turbine Blade Structure Design Method [Dissertation]. Beijing: North China Electric Power University, 2011
    [19]
    Jureczko M, Pawlak M, M??yk A. Optimisation of wind turbine blades. J Mater Process Technol, 2005, 167(2-3): 463 doi: 10.1016/j.jmatprotec.2005.06.055
    [20]
    胡燕平, 戴巨川, 劉德順. 大型風力機葉片研究現狀與發展趨勢. 機械工程學報, 2013, 49(20):140 doi: 10.3901/JME.2013.20.140

    Hu Y P, Dai J C, Liu D S. Research status and development trend on large scale wind turbine blades. J Mech Eng, 2013, 49(20): 140 doi: 10.3901/JME.2013.20.140
    [21]
    Beauson J, Madsen B, Toncelli C, et al. Recycling of shredded composites from wind turbine blades in new thermoset polymer composites. Compost A, 2016, 90: 390 doi: 10.1016/j.compositesa.2016.07.009
    [22]
    蘇南. 老舊風機“以大代小”掣肘多. 中國能源報, 2021, 8

    Su N. More difficulties on "large instead of small" of the old wind turbines. China Energy News, 2021, 8
    [23]
    許淳瑤, 葛立超, 馮紅翠, 等. 風力發電現狀及葉片組成與回收利用綜述. 熱力發電, 2022, 51(9):29

    Xu C Y, Ge L C, Feng H C, et al. Review on status of wind power generation and composition and recycling of wind turbine blades. Therm Power Gener, 2022, 51(9): 29
    [24]
    Paulsen E B, Enevoldsen P. A multidisciplinary review of recycling methods for end-of-life wind turbine blades. Energies, 2021, 14(14): 4247 doi: 10.3390/en14144247
    [25]
    張玲玲. 風電葉片退役后何去何從?中國建材報. 2021, 1

    Zhang L L. Where do wind turbine blades go after they are retired? China Building Materials News, 2021, 1
    [26]
    Jensen J P. Evaluating the environmental impacts of recycling wind turbines. Wind Energy, 2019, 22(2): 316 doi: 10.1002/we.2287
    [27]
    王新頻. 風力渦輪機葉片作為水泥生產用替代原燃材料. 水泥, 2021(4):17

    Wang X P. Using wind turbine blades as alternative raw material and fuel for cement production. Cement, 2021(4): 17
    [28]
    張建川, 張前峰, 蔡紅軍. 風力發電復合材料葉片廢棄物的幾種處理方法分析. 材料科學與工程學報, 2012, 30(3):473

    Zhang J C, Zhang Q F, Cai H J. Analysis on treatment methods of composite blade wastes of wind turbines. J Mater Sci Eng, 2012, 30(3): 473
    [29]
    Rahimizadeh A, Kalman J, Fayazbakhsh K, et al. Mechanical and thermal study of 3D printing composite filaments from wind turbine waste. Polym Compos, 2021, 42(5): 2305 doi: 10.1002/pc.25978
    [30]
    Rahimizadeh A, Kalman J, Henri R, et al. Recycled glass fiber composites from wind turbine waste for 3D printing feedstock: Effects of fiber content and interface on mechanical performance. Materials, 2019, 12(23): 3929 doi: 10.3390/ma12233929
    [31]
    Pender K, Yang L. Regenerating performance of glass fibre recycled from wind turbine blade. Compos B, 2020, 198: 108230 doi: 10.1016/j.compositesb.2020.108230
    [32]
    Moslehi A, Ajji A, Heuzey M C, et al. Polylactic acid/recycled wind turbine glass fiber composites with enhanced mechanical properties and toughness. J Appl Polym Sci, 2022, 139(15): 51934 doi: 10.1002/app.51934
    [33]
    ?kesson D, Foltynowicz Z, Christéen J, et al. Microwave pyrolysis as a method of recycling glass fibre from used blades of wind turbines. J Reinf Plast Compos, 2012, 31(17): 1136 doi: 10.1177/0731684412453512
    [34]
    Lewandowski K, Skórczewska K, Piszczek K, et al. Recycled glass fibres from wind turbines as a filler for poly(vinyl chloride). Adv Polym Technol, 2019, 2019: 1
    [35]
    Mattsson C, André A, Juntikka M, et al. Chemical recycling of End-of-Life wind turbine blades by solvolysis/HTL. IOP Conf Ser:Mater Sci Eng, 2020, 942(1): 012013 doi: 10.1088/1757-899X/942/1/012013
    [36]
    Rani M, Choudhary P, Krishnan V, et al. Development of sustainable microwave-based approach to recover glass fibers for wind turbine blades composite waste. Resour Conserv Recycl, 2022, 179: 106107 doi: 10.1016/j.resconrec.2021.106107
    [37]
    Cousins D S, Suzuki Y, Murray R E, et al. Recycling glass fiber thermoplastic composites from wind turbine blades. J Clean Prod, 2019, 209: 1252 doi: 10.1016/j.jclepro.2018.10.286
    [38]
    Rani M, Choudhary P, Krishnan V, et al. A review on recycling and reuse methods for carbon fiber/glass fiber composites waste from wind turbine blades. Compos B, 2021, 215: 108768 doi: 10.1016/j.compositesb.2021.108768
    [39]
    Cherrington R, Goodship V, Meredith J, et al. Producer responsibility: Defining the incentive for recycling composite wind turbine blades in Europe. Energy Policy, 2012, 47: 13 doi: 10.1016/j.enpol.2012.03.076
    [40]
    Zhou Y W, Weng Y T, Li L M, et al. Recycled GFRP aggregate concrete considering aggregate grading: Compressive behavior and stress–strain modeling. Polymers, 2022, 14(3): 581 doi: 10.3390/polym14030581
    [41]
    Baturkin D, Masmoudi R, Tagnit-Hamou A, et al. Feasibility study on the recycling of FRP materials from wind turbine blades in concrete // 10th International Conference on FRP Composites in Civil Engineering (CICE 2020/2021). Turkey, 2022: 1729
    [42]
    Baturkin D, Hisseine O A, Masmoudi R, et al. Valorization of recycled FRP materials from wind turbine blades in concrete. Resour Conserv Recycl, 2021, 174: 105807 doi: 10.1016/j.resconrec.2021.105807
    [43]
    Yazdanbakhsh A, Bank L C, Rieder K A, et al. Concrete with discrete slender elements from mechanically recycled wind turbine blades. Resour Conserv Recycl, 2018, 128: 11 doi: 10.1016/j.resconrec.2017.08.005
    [44]
    Yazdanbakhsh A, Bank L C, Chen C. Use of recycled FRP reinforcing bar in concrete as coarse aggregate and its impact on the mechanical properties of concrete. Constr Build Mater, 2016, 121: 278 doi: 10.1016/j.conbuildmat.2016.05.165
    [45]
    Haider M M, Nassiri S, Englund K, et al. Exploratory study of flexural performance of mechanically recycled glass fiber reinforced polymer shreds as reinforcement in cement mortar. Transportation Research Record, 2021, 2675(10): 1254 doi: 10.1177/03611981211015246
    [46]
    P?awecka K, Przyby?a J, Korniejenko K, et al. Recycling of mechanically ground wind turbine blades as filler in geopolymer composite. Materials, 2021, 14(21): 6539 doi: 10.3390/ma14216539
    [47]
    Novais R M, Carvalheiras J, Seabra M P, et al. Effective mechanical reinforcement of inorganic polymers using glass fibre waste. J Clean Prod, 2017, 166: 343 doi: 10.1016/j.jclepro.2017.07.242
    [48]
    Joustra J, Flipsen B, Balkenende R. Structural reuse of high end composite products: A design case study on wind turbine blades. Resour Conserv Recycl, 2021, 167: 105393 doi: 10.1016/j.resconrec.2020.105393
    [49]
    André A, Magdalena J, Cecilia M, et al. The re-use of end-of-life fiber reinforced polymer composites in construction // 10th International Conference on FRP Composites in Civil Engineering (CICE 2020/2021). Turkey, 2022: 1183
    [50]
    André A, Kullberg J, Nygren D, et al. Re-use of wind turbine blade for construction and infrastructure applications. IOP Conf Ser:Mater Sci Eng, 2020, 942(1): 012015 doi: 10.1088/1757-899X/942/1/012015
    [51]
    Mishnaevsky Jr L. Sustainable end-of-life management of wind turbine blades: Overview of current and coming solutions. Materials, 2021, 14(5): 1124 doi: 10.3390/ma14051124
    [52]
    Gentry T R, Al-Haddad T, Bank L C, et al. Structural analysis of a roof extracted from a wind turbine blade. J Archit Eng, 2020, 26(4): 04020040 doi: 10.1061/(ASCE)AE.1943-5568.0000440
    [53]
    Bank L C, Arias F R, Gentry T R, et al. Reusing composite materials from decommissioned wind turbine blades // Non-Conventional Materials and Technologies NOCMAT 2017, 2017
    [54]
    Alshannaq A, Bank L C, Scott D, et al. Structural re-use of FRP composite wind turbine blades as power-line utility poles and towers // 10th International Conference on Fibre-Reinforced Polymer (FRP) Composites in Civil Engineering (CICE 2020/2021). Turkey, 2022: 121
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article views (329) PDF downloads(81) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频