Citation: | LI Fanqun, SUN Zhen, YIN Shuo, LIU Siliang, ZHANG Zongliang, LIU Fangyang. Novel LLZTO@Ag composite layer for the stable anode of sulfide all-solid-state lithium battery[J]. Chinese Journal of Engineering, 2023, 45(11): 1928-1938. doi: 10.13374/j.issn2095-9389.2022.09.26.003 |
[1] |
Kamaya N, Homma K, Yamakawa Y, et al. A lithium superionic conductor. Nature Mater, 2011, 10(9): 682 doi: 10.1038/nmat3066
|
[2] |
Wang S, Zhang Y B, Zhang X, et al. High-conductivity argyrodite Li6PS5Cl solid electrolytes prepared via optimized sintering processes for all-solid-state lithium-sulfur batteries. ACS Appl Mater Interfaces, 2018, 10(49): 42279 doi: 10.1021/acsami.8b15121
|
[3] |
Yu C, van Eijck L, Ganapathy S, et al. Synthesis, structure and electrochemical performance of the argyrodite Li6PS5Cl solid electrolyte for Li-ion solid state batteries. Electrochim Acta, 2016, 215: 93 doi: 10.1016/j.electacta.2016.08.081
|
[4] |
Banerjee A, Wang X F, Fang C C, et al. Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem Rev, 2020, 120(14): 6878 doi: 10.1021/acs.chemrev.0c00101
|
[5] |
Zhang W B, Weber D A, Weigand H, et al. Interfacial processes and influence of composite cathode microstructure controlling the performance of all-solid-state lithium batteries. ACS Appl Mater Interfaces, 2017, 9(21): 17835 doi: 10.1021/acsami.7b01137
|
[6] |
Luo S T, Wang Z Y, Li X L, et al. Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes. Nat Commun, 2021, 12: 6968 doi: 10.1038/s41467-021-27311-7
|
[7] |
Kato A, Suyama M, Hotehama C, et al. High-temperature performance of all-solid-state lithium-metal batteries having Li/Li3PS4Interfaces modified with Au thin films. J Electrochem Soc, 2018, 165(9): A1950 doi: 10.1149/2.1451809jes
|
[8] |
Li M Q, Zhou D, Wang C, et al. In situ formed Li–Ag alloy interface enables Li10GeP2S12-based all-solid-state lithium batteries. ACS Appl Mater Interfaces, 2021, 13(42): 50076 doi: 10.1021/acsami.1c16356
|
[9] |
Lee Y G, Fujiki S, Jung C, et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes. Nat Energy, 2020, 5(4): 299 doi: 10.1038/s41560-020-0575-z
|
[10] |
Liang J W, Li X N, Zhao Y, et al. An air-stable and dendrite-free Li anode for highly stable all-solid-state sulfide-based Li batteries. Adv Energy Mater, 2019, 9(38): 1902125 doi: 10.1002/aenm.201902125
|
[11] |
Wang C H, Adair K R, Liang J W, et al. Solid-state plastic crystal electrolytes: Effective protection interlayers for sulfide-based all-solid-state lithium metal batteries. Adv Funct Mater, 2019, 29(26): 1900392 doi: 10.1002/adfm.201900392
|
[12] |
Simon F J, Hanauer M, Richter F H, et al. Interphase formation of PEO20: LiTFSI–Li6PS5Cl composite electrolytes with lithium metal. ACS Appl Mater Interfaces, 2020, 12(10): 11713 doi: 10.1021/acsami.9b22968
|
[13] |
Wang Y X, Lu D P, Xiao J, et al. Superionic conduction and interfacial properties of the low temperature phase Li7P2S8Br0.5I0.5. Energy Storage Mater, 2019, 19: 80
|
[14] |
Sun Z, Lai Y Q, lv N, et al. Insights on the properties of the O-doped argyrodite sulfide solid electrolytes (Li6PS5- xClO x, x=0–1). ACS Appl Mater Interfaces, 2021, 13(46): 54924 doi: 10.1021/acsami.1c14573
|
[15] |
Lu Y, Zhao C Z, Zhang R, et al. The carrier transition from Li atoms to Li vacancies in solid-state lithium alloy anodes. Sci Adv, 2021, 7(38): eabi5520 doi: 10.1126/sciadv.abi5520
|
[16] |
Webb S A, Baggetto L, Bridges C A, et al. The electrochemical reactions of pure indium with Li and Na: Anomalous electrolyte decomposition, benefits of FEC additive, phase transitions and electrode performance. J Power Sources, 2014, 248: 1105 doi: 10.1016/j.jpowsour.2013.10.033
|
[17] |
Santhosha A L, Medenbach L, Buchheim J R, et al. The indium?lithium electrode in solid-state lithium-ion batteries: phase formation, redox potentials, and interface stability. Batter Supercaps, 2019, 2(6): 524 doi: 10.1002/batt.201800149
|
[18] |
Zhang Z H, Chen S J, Yang J, et al. Interface re-engineering of Li10GeP2S12 electrolyte and lithium anode for all-solid-state lithium batteries with ultralong cycle life. ACS Appl Mater Interfaces, 2018, 10(3): 2556 doi: 10.1021/acsami.7b16176
|
[19] |
Bai Y, Zhao Y B, Li W D, et al. Organic-inorganic multi-scale enhanced interfacial engineering of sulfide solid electrolyte in Li–S battery. Chem Eng J, 2020, 396: 125334 doi: 10.1016/j.cej.2020.125334
|
[20] |
Wan H L, Zhang J X, Xia J L, et al. F and N rich solid electrolyte for stable all-solid-state battery. Adv Funct Mater, 2022, 32(15): 2110876 doi: 10.1002/adfm.202110876
|
[21] |
Kim D H, Lee H A, Song Y B, et al. Sheet-type Li6PS5Cl-infiltrated Si anodes fabricated by solution process for all-solid-state lithium-ion batteries. J Power Sources, 2019, 426: 143 doi: 10.1016/j.jpowsour.2019.04.028
|
[22] |
Tan D H S, Chen Y T, Yang H D, et al. Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes. Science, 2021, 373(6562): 1494 doi: 10.1126/science.abg7217
|
[23] |
Shen F, Guo W C, Zeng D Y, et al. A simple and highly efficient method toward high-density garnet-type LLZTO solid-state electrolyte. ACS Appl Mater Interfaces, 2020, 12(27): 30313 doi: 10.1021/acsami.0c04850
|
[24] |
Gupta A, Kazyak E, Dasgupta N P, et al. Electrochemical and surface chemistry analysis of lithium lanthanum zirconium tantalum oxide (LLZTO)/liquid electrolyte (LE) interfaces. J Power Sources, 2020, 474: 228598 doi: 10.1016/j.jpowsour.2020.228598
|
[25] |
Gao J, Guo W C, Yin Y T, et al. Well-contacted Li/LLZTO interface by citric acid aqueous treatment for solid-state Li metal batteries. Mater Lett, 2020, 280: 128543 doi: 10.1016/j.matlet.2020.128543
|