<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 45 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
LI Fanqun, SUN Zhen, YIN Shuo, LIU Siliang, ZHANG Zongliang, LIU Fangyang. Novel LLZTO@Ag composite layer for the stable anode of sulfide all-solid-state lithium battery[J]. Chinese Journal of Engineering, 2023, 45(11): 1928-1938. doi: 10.13374/j.issn2095-9389.2022.09.26.003
Citation: LI Fanqun, SUN Zhen, YIN Shuo, LIU Siliang, ZHANG Zongliang, LIU Fangyang. Novel LLZTO@Ag composite layer for the stable anode of sulfide all-solid-state lithium battery[J]. Chinese Journal of Engineering, 2023, 45(11): 1928-1938. doi: 10.13374/j.issn2095-9389.2022.09.26.003

Novel LLZTO@Ag composite layer for the stable anode of sulfide all-solid-state lithium battery

doi: 10.13374/j.issn2095-9389.2022.09.26.003
More Information
  • Corresponding author: E-mail: zongliang.zhang@csu.edu.cn
  • Received Date: 2022-09-26
    Available Online: 2023-03-14
  • Publish Date: 2023-11-01
  • Sulfide all-solid-state lithium metal batteries have received increasing attention owing to their high specific energy density and remarkable safety. However, serious interfacial problems still limit their further development. To solve the problem of instability of the interface between the solid-state electrolyte argyrodite (Li6PS5Cl) and lithium anode, strategies such as introducing an alloy cathode, introducing an intermediate interface layer, and directly modifying the electrolyte have been proposed; however, these methods are not suitable for practical applications. Notably, lithium lanthanum zirconium oxide (LLZTO) exhibits high lithium-ion conductivity and remarkable material stability, and silver (Ag) metal shows satisfactory lithium conductivity. Accordingly, a composite interface layer made of LLZTO and Ag was innovatively proposed to solve the lithium metal anode/Li6PS5Cl interface problem and increase the cycle stability of all-solid-state lithium batteries. We studied the effects of LLZTO–Ag composite interface layers with different combination manners, such as simply dispersed LLZTO–Ag composite, evenly dispersed and coated composite, and ball-milled composite, on the anode interface of Li6PS5Cl all-solid-state lithium metal batteries. The electrochemical performance of an optimized all-solid-state battery was also investigated. The results show that the surface of the LLZTO@Ag composite layer obtained by ball milling is relatively smoother and denser, which can effectively prevent lithium dendrite growth and battery short circuit. Compared with the simply dispersed LLZTO–Ag composite method and the evenly dispersed and coated composite method, the ball-milled composite layer anode method can be used to effectively reduce local lithium deposition current density and successfully solve the short circuit problem of the sulfide solid electrolyte. The first cycle efficiency of the LLZTOpw@Agpw–Lipl all-solid-state battery is 77.5%, and the discharge specific capacity is 187.3 mA·h·g?1. After 100 cycles at 0.3C, the discharge specific capacity is still 125.5 mA·h·g?1, and the capacity retention rate is 81.7%. Additionally, we investigated the electrochemical behavior of all-solid-state lithium metal batteries upon the introduction of the LLZTO–Ag composite interfacial layer by using the AC impedance (EIS) and constant-current intermittent titration technique. The LLZTOpw@Agpw anode shows satisfactory cycle stability for lithium batteries. The impedance of the LLZTOpw@Agpw–Lipl all-solid-state battery exhibits periodic oscillations, indicating that lithium vacancies will be generated in the NCM811 crystal upon extraction of lithium ions, thereby increasing the conductivity of the lithium ions and reducing their migration resistance as well. The effect is most prominent when half of the lithium ions are extracted, but further extraction of lithium ions will lead to too many vacancies in the material, following which extraction of lithium ions will be impeded, thereby increasing the migration resistance of the lithium ions. The interfacial impedance on the cathode side considerably increased during long cycling, thus affecting the subsequent cycling performance, while the interface on the anode side remained essentially stable, highlighting the stabilizing effect of the LLZTO–Ag composite interfacial layer.

     

  • loading
  • [1]
    Kamaya N, Homma K, Yamakawa Y, et al. A lithium superionic conductor. Nature Mater, 2011, 10(9): 682 doi: 10.1038/nmat3066
    [2]
    Wang S, Zhang Y B, Zhang X, et al. High-conductivity argyrodite Li6PS5Cl solid electrolytes prepared via optimized sintering processes for all-solid-state lithium-sulfur batteries. ACS Appl Mater Interfaces, 2018, 10(49): 42279 doi: 10.1021/acsami.8b15121
    [3]
    Yu C, van Eijck L, Ganapathy S, et al. Synthesis, structure and electrochemical performance of the argyrodite Li6PS5Cl solid electrolyte for Li-ion solid state batteries. Electrochim Acta, 2016, 215: 93 doi: 10.1016/j.electacta.2016.08.081
    [4]
    Banerjee A, Wang X F, Fang C C, et al. Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem Rev, 2020, 120(14): 6878 doi: 10.1021/acs.chemrev.0c00101
    [5]
    Zhang W B, Weber D A, Weigand H, et al. Interfacial processes and influence of composite cathode microstructure controlling the performance of all-solid-state lithium batteries. ACS Appl Mater Interfaces, 2017, 9(21): 17835 doi: 10.1021/acsami.7b01137
    [6]
    Luo S T, Wang Z Y, Li X L, et al. Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes. Nat Commun, 2021, 12: 6968 doi: 10.1038/s41467-021-27311-7
    [7]
    Kato A, Suyama M, Hotehama C, et al. High-temperature performance of all-solid-state lithium-metal batteries having Li/Li3PS4Interfaces modified with Au thin films. J Electrochem Soc, 2018, 165(9): A1950 doi: 10.1149/2.1451809jes
    [8]
    Li M Q, Zhou D, Wang C, et al. In situ formed Li–Ag alloy interface enables Li10GeP2S12-based all-solid-state lithium batteries. ACS Appl Mater Interfaces, 2021, 13(42): 50076 doi: 10.1021/acsami.1c16356
    [9]
    Lee Y G, Fujiki S, Jung C, et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes. Nat Energy, 2020, 5(4): 299 doi: 10.1038/s41560-020-0575-z
    [10]
    Liang J W, Li X N, Zhao Y, et al. An air-stable and dendrite-free Li anode for highly stable all-solid-state sulfide-based Li batteries. Adv Energy Mater, 2019, 9(38): 1902125 doi: 10.1002/aenm.201902125
    [11]
    Wang C H, Adair K R, Liang J W, et al. Solid-state plastic crystal electrolytes: Effective protection interlayers for sulfide-based all-solid-state lithium metal batteries. Adv Funct Mater, 2019, 29(26): 1900392 doi: 10.1002/adfm.201900392
    [12]
    Simon F J, Hanauer M, Richter F H, et al. Interphase formation of PEO20: LiTFSI–Li6PS5Cl composite electrolytes with lithium metal. ACS Appl Mater Interfaces, 2020, 12(10): 11713 doi: 10.1021/acsami.9b22968
    [13]
    Wang Y X, Lu D P, Xiao J, et al. Superionic conduction and interfacial properties of the low temperature phase Li7P2S8Br0.5I0.5. Energy Storage Mater, 2019, 19: 80
    [14]
    Sun Z, Lai Y Q, lv N, et al. Insights on the properties of the O-doped argyrodite sulfide solid electrolytes (Li6PS5- xClO x, x=0–1). ACS Appl Mater Interfaces, 2021, 13(46): 54924 doi: 10.1021/acsami.1c14573
    [15]
    Lu Y, Zhao C Z, Zhang R, et al. The carrier transition from Li atoms to Li vacancies in solid-state lithium alloy anodes. Sci Adv, 2021, 7(38): eabi5520 doi: 10.1126/sciadv.abi5520
    [16]
    Webb S A, Baggetto L, Bridges C A, et al. The electrochemical reactions of pure indium with Li and Na: Anomalous electrolyte decomposition, benefits of FEC additive, phase transitions and electrode performance. J Power Sources, 2014, 248: 1105 doi: 10.1016/j.jpowsour.2013.10.033
    [17]
    Santhosha A L, Medenbach L, Buchheim J R, et al. The indium?lithium electrode in solid-state lithium-ion batteries: phase formation, redox potentials, and interface stability. Batter Supercaps, 2019, 2(6): 524 doi: 10.1002/batt.201800149
    [18]
    Zhang Z H, Chen S J, Yang J, et al. Interface re-engineering of Li10GeP2S12 electrolyte and lithium anode for all-solid-state lithium batteries with ultralong cycle life. ACS Appl Mater Interfaces, 2018, 10(3): 2556 doi: 10.1021/acsami.7b16176
    [19]
    Bai Y, Zhao Y B, Li W D, et al. Organic-inorganic multi-scale enhanced interfacial engineering of sulfide solid electrolyte in Li–S battery. Chem Eng J, 2020, 396: 125334 doi: 10.1016/j.cej.2020.125334
    [20]
    Wan H L, Zhang J X, Xia J L, et al. F and N rich solid electrolyte for stable all-solid-state battery. Adv Funct Mater, 2022, 32(15): 2110876 doi: 10.1002/adfm.202110876
    [21]
    Kim D H, Lee H A, Song Y B, et al. Sheet-type Li6PS5Cl-infiltrated Si anodes fabricated by solution process for all-solid-state lithium-ion batteries. J Power Sources, 2019, 426: 143 doi: 10.1016/j.jpowsour.2019.04.028
    [22]
    Tan D H S, Chen Y T, Yang H D, et al. Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes. Science, 2021, 373(6562): 1494 doi: 10.1126/science.abg7217
    [23]
    Shen F, Guo W C, Zeng D Y, et al. A simple and highly efficient method toward high-density garnet-type LLZTO solid-state electrolyte. ACS Appl Mater Interfaces, 2020, 12(27): 30313 doi: 10.1021/acsami.0c04850
    [24]
    Gupta A, Kazyak E, Dasgupta N P, et al. Electrochemical and surface chemistry analysis of lithium lanthanum zirconium tantalum oxide (LLZTO)/liquid electrolyte (LE) interfaces. J Power Sources, 2020, 474: 228598 doi: 10.1016/j.jpowsour.2020.228598
    [25]
    Gao J, Guo W C, Yin Y T, et al. Well-contacted Li/LLZTO interface by citric acid aqueous treatment for solid-state Li metal batteries. Mater Lett, 2020, 280: 128543 doi: 10.1016/j.matlet.2020.128543
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article views (400) PDF downloads(65) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频