Citation: | CAI Mei-feng, MA Ming-hui, PAN Ji-liang, XI Xun, GUO Qi-feng. Co-mining of mineral and geothermal resources: A state-of-the-art review and future perspectives[J]. Chinese Journal of Engineering, 2022, 44(10): 1669-1681. doi: 10.13374/j.issn2095-9389.2022.08.24.001 |
[1] |
蔡美峰, 薛鼎龍, 任奮華. 金屬礦深部開采現狀與發展戰略. 工程科學學報, 2019, 41(4):417
Cai M F, Xue D L, Ren F H. Current status and development strategy of metal mines. Chin J Eng, 2019, 41(4): 417
|
[2] |
蔡美峰, 譚文輝, 吳星輝, 等. 金屬礦山深部智能開采現狀及其發展策略. 中國有色金屬學報, 2021, 31(11):3409 doi: 10.11817/j.ysxb.1004.0609.2021-42115
Cai M F, Tan W H, Wu X H, et al. Current situation and development strategy of deep intelligent mining in metal mines. Chin J Nonferrous Met, 2021, 31(11): 3409 doi: 10.11817/j.ysxb.1004.0609.2021-42115
|
[3] |
何滿潮, 謝和平, 彭蘇萍, 等. 深部開采巖體力學研究. 巖石力學與工程學報, 2005, 24(16):2803 doi: 10.3321/j.issn:1000-6915.2005.16.001
He M C, Xie H P, Peng S P, et al. Study on rock mechanics in deep mining engineering. Chin J Rock Mech Eng, 2005, 24(16): 2803 doi: 10.3321/j.issn:1000-6915.2005.16.001
|
[4] |
何滿潮, 郭平業. 深部巖體熱力學效應及溫控對策. 巖石力學與工程學報, 2013, 32(12):2377
He M C, Guo P Y. Deep rock mass thermodynamic effect and temperature control measures. Chin J Rock Mech Eng, 2013, 32(12): 2377
|
[5] |
袁亮. 淮南礦區礦井降溫研究與實踐. 采礦與安全工程學報, 2007, 24(3):298 doi: 10.3969/j.issn.1673-3363.2007.03.010
Yuan L. Theoretical analysis and practical application of coal mine cooling in Huainan mining area. J Min &Saf Eng, 2007, 24(3): 298 doi: 10.3969/j.issn.1673-3363.2007.03.010
|
[6] |
李夕兵, 周健, 王少鋒, 等. 深部固體資源開采評述與探索. 中國有色金屬學報, 2017, 27(6):1236 doi: 10.19476/j.ysxb.1004.0609.2017.06.021
Li X B, Zhou J, Wang S F, et al. Review and practice of deep mining for solid mineral resources. Chin J Nonferrous Met, 2017, 27(6): 1236 doi: 10.19476/j.ysxb.1004.0609.2017.06.021
|
[7] |
蔡美峰, 多吉, 陳湘生, 等. 深部礦產和地熱資源共采戰略研究. 中國工程科學, 2021, 23(6):43
Cai M F, Dor J, Chen X S, et al. Development strategy for Co-mining of the deep mineral and geothermal resources. Strateg Study CAE, 2021, 23(6): 43
|
[8] |
張化遠. 地下礦山節能的措施及途徑. 金屬礦山, 1981(11):13
Zhang H Y. Measures and ways to save energy in underground mines. Met Mine, 1981(11): 13
|
[9] |
萬志軍, 畢世科, 張源, 等. 煤–熱共采的理論與技術框架. 煤炭學報, 2018, 43(8):2099
Wan Z J, Bi S K, Zhang Y, et al. Framework of the theory and technology for simultaneous extraction of coal and geothermal resources. J China Coal Soc, 2018, 43(8): 2099
|
[10] |
謝和平, 高峰, 鞠楊. 深部巖體力學研究與探索. 巖石力學與工程學報, 2015, 34(11):2161 doi: 10.13722/j.cnki.jrme.2015.1369
Xie H P, Gao F, Ju Y. Research and development of rock mechanics in deep ground engineering. Chin J Rock Mech Eng, 2015, 34(11): 2161 doi: 10.13722/j.cnki.jrme.2015.1369
|
[11] |
Preene M, Younger P L. Can you take the heat?–Geothermal energy in mining. Min Technol, 2014, 123(2): 107 doi: 10.1179/1743286314Y.0000000058
|
[12] |
Bailey M T, Gandy C J, Watson I A, et al. Heat recovery potential of mine water treatment systems in Great Britain. Int J Coal Geol, 2016, 164: 77 doi: 10.1016/j.coal.2016.03.007
|
[13] |
Abbaspour H, Abbaspour F. Renewable energy systems in the mining industry: A literature review and research agenda. Int J Renew Energy Res, 2022, 12(1): 569
|
[14] |
郭奇峰, 蔡美峰, 吳星輝, 等. 面向2035年的金屬礦深部多場智能開采發展戰略. 工程科學學報, 2022, 44(4):476
Guo Q F, Cai M F, Wu X H, et al. Technological strategies for intelligent mining subject to multifield couplings in deep metal mines toward 2035. Chin J Eng, 2022, 44(4): 476
|
[15] |
Guo Q F, Xi X, Yang S T, et al. Technology strategies to achieve carbon peak and carbon neutrality for China’s metal mines. Int J Miner Metall Mater, 2022, 29(4): 626 doi: 10.1007/s12613-021-2374-3
|
[16] |
袁亮. 深部采動響應與災害防控研究進展. 煤炭學報, 2021, 46(3):716 doi: 10.13225/j.cnki.jccs.YT21.0158
Yuan L. Research progress of mining response and disaster prevention and control in deep coal mines. J China Coal Soc, 2021, 46(3): 716 doi: 10.13225/j.cnki.jccs.YT21.0158
|
[17] |
黃炳香, 張農, 靖洪文, 等. 深井采動巷道圍巖流變和結構失穩大變形理論. 煤炭學報, 2020, 45(3):911 doi: 10.13225/j.cnki.jccs.SJ19.1451
Huang B X, Zhang N, Jing H W, et al. Large deformation theory of rheology and structural instability of the surrounding rock in deep mining roadway. J China Coal Soc, 2020, 45(3): 911 doi: 10.13225/j.cnki.jccs.SJ19.1451
|
[18] |
藍航, 陳東科, 毛德兵. 我國煤礦深部開采現狀及災害防治分析. 煤炭科學技術, 2016, 44(1):39 doi: 10.13199/j.cnki.cst.2016.01.007
Lan H, Chen D K, Mao D B. Current status of deep mining and disaster prevention in China. Coal Sci Technol, 2016, 44(1): 39 doi: 10.13199/j.cnki.cst.2016.01.007
|
[19] |
Shao S S, Ranjith P G, Wasantha P L P, et al. Experimental and numerical studies on the mechanical behaviour of Australian Strathbogie granite at high temperatures: An application to geothermal energy. Geothermics, 2015, 54: 96 doi: 10.1016/j.geothermics.2014.11.005
|
[20] |
李林果, 李百祥. 從青海共和—貴德盆地與山地地溫場特征探討熱源機制和地熱系統. 物探與化探, 2017, 41(1):29
Li L G, Li B X. A discussion on the heat source mechanism and geothermal system of Gonghe-Guide basin and mountain geothermal field in Qinghai Province. Geophys Geochem Explor, 2017, 41(1): 29
|
[21] |
Tang X C, Zhang J, Pang Z H, et al. Distribution and genesis of the eastern Tibetan Plateau geothermal belt, western China. Environ Earth Sci, 2016, 76(1): 1
|
[22] |
張龍, 陳振宇, 汪方躍. 華南花崗巖型鈾礦床主要特征與成礦作用研究進展. 巖石學報, 2021, 37(9):2657 doi: 10.18654/1000-0569/2021.09.04
Zhang L, Chen Z Y, Wang F Y. General characteristics and research progresses in metallogenesis of granite-related uranium deposits in South China. Acta Petrol Sin, 2021, 37(9): 2657 doi: 10.18654/1000-0569/2021.09.04
|
[23] |
Li J W, Zhou M F, Li X F, et al. Structural control on uranium mineralization in South China: Implications for fluid flow in continental strike-slip faults. Sci China Ser D Earth Sci, 2002, 45(9): 851 doi: 10.1007/BF02879519
|
[24] |
Zhao Z F, Zheng Y F, Wei C S, et al. Temporal relationship between granite cooling and hydrothermal uranium mineralization at Dalongshan in China: a combined radiometric and oxygen isotopic study. Ore Geol Rev, 2004, 25(3-4): 221 doi: 10.1016/j.oregeorev.2004.04.002
|
[25] |
Qiu L, Yan D P, Ren M H, et al. The source of uranium within hydrothermal uranium deposits of the Motianling mining district, Guangxi, South China. Ore Geol Rev, 2018, 96: 201 doi: 10.1016/j.oregeorev.2018.04.001
|
[26] |
Wang G L, Zhang W, Ma F, et al. Overview on hydrothermal and hot dry rock researches in China. China Geol, 2018, 1(2): 273 doi: 10.31035/cg2018021
|
[27] |
Zhu M X, Tong W. Surface hydrothermal minerals and their distribution in the Tengchong geothermal area, China. Geothermics, 1987, 16(2): 181 doi: 10.1016/0375-6505(87)90065-4
|
[28] |
李燕燕, 多吉, 張成江, 等. 地熱與熱液型鈾礦成因聯系: 研究現狀及解決方法. 地質論評, 2020, 66(5):1361
Li Y Y, Duo J, Zhang C J, et al. Genetic relationship between geothermal energy and hydrothermal uranium deposits: Research progress and method. Geol Rev, 2020, 66(5): 1361
|
[29] |
劉成林, 余小燦, 袁學銀, 等. 世界鹽湖鹵水型鋰礦特征、分布規律與成礦動力模型. 地質學報, 2021, 95(7):2009 doi: 10.3969/j.issn.0001-5717.2021.07.001
Liu C L, Yu X C, Yuan X Y, et al. Characteristics, distribution regularity and formation model of brine-type Li deposits in salt lakes in the world. Acta Geol Sin, 2021, 95(7): 2009 doi: 10.3969/j.issn.0001-5717.2021.07.001
|
[30] |
Wang C, Zheng M P, Zhang X F, et al. Geothermal‐type lithium resources in southern Xizang, China. Acta Geol Sin Engl Ed, 2021, 95(3): 860 doi: 10.1111/1755-6724.14675
|
[31] |
Stringfellow W T, Dobson P F. Technology for the recovery of lithium from geothermal brines. Energies, 2021, 14(20): 6805 doi: 10.3390/en14206805
|
[32] |
王晨光, 鄭綿平, 張雪飛, 等. 青藏高原南部地熱型鋰資源. 科技導報, 2020, 38(15):24 doi: 10.3981/j.issn.1000-7857.2020.15.003
Wang C G, Zheng M P, Zhang X F, et al. Geothermal-type lithium resources in southern Tibetan Plateau. Sci &Technol Rev, 2020, 38(15): 24 doi: 10.3981/j.issn.1000-7857.2020.15.003
|
[33] |
Tan H B, Su J B, Xu P, et al. Enrichment mechanism of Li, B and K in the geothermal water and associated deposits from the Kawu area of the Tibetan Plateau: Constraints from geochemical experimental data. Appl Geochem, 2018, 93: 60 doi: 10.1016/j.apgeochem.2018.04.001
|
[34] |
郭林楠. 膠東型金礦床成礦機理[學位論文]. 北京: 中國地質大學(北京), 2016
Guo L N. Metallogenic mechanism of the Jiaodong-type gold deposit, Shandong Province, China [Dissertation]. Beijing: China University of Geosciences (Beijing), 2016
|
[35] |
宋明春, 丁正江, 劉向東, 等. 膠東型金礦床斷裂控礦及成礦模式. 地質學報, 2022, 96(5):1774 doi: 10.3969/j.issn.0001-5717.2022.05.017
Song M C, Ding Z J, Liu X D, et al. Structural controls on the Jiaodong type gold deposits and metallogenic model. Acta Geol Sin, 2022, 96(5): 1774 doi: 10.3969/j.issn.0001-5717.2022.05.017
|
[36] |
丁正江, 孫豐月, 劉福來, 等. 膠東中生代動力學演化及主要金屬礦床成礦系列. 巖石學報, 2015, 31(10):3045
Ding Z J, Sun F Y, Liu F L, et al. Mesozoic geodynamic evolution and metallogenic series of major metal deposits in Jiaodong Peninsula, China. Acta Petrol Sin, 2015, 31(10): 3045
|
[37] |
卜明. 深井巖鹽鹵水地熱能綜合利用研究. 中國井礦鹽, 2016, 47(1):1 doi: 10.3969/j.issn.1001-0335.2016.01.001
Bu M. Study on comprehensive utilization of deep geothermal brine. China Well Rock Salt, 2016, 47(1): 1 doi: 10.3969/j.issn.1001-0335.2016.01.001
|
[38] |
Gray T A. Geothermal Resource Assessment of the Gueydan Salt Dome and the Adjacent Southeast Gueydan Field, Vermilion Parish, Louisiana [Dissertation]. Louisiana: Louisiana State University and Agricultural & Mechanical College, 2010
|
[39] |
Warren J K. Salt usually seals, but sometimes leaks: Implications for mine and cavern stabilities in the short and long term. Earth Sci Rev, 2017, 165: 302 doi: 10.1016/j.earscirev.2016.11.008
|
[40] |
王向鋒. 深埋鹽礦鹵水地熱能利用初探. 中國井礦鹽, 2022, 53(4):8 doi: 10.3969/j.issn.1001-0335.2022.04.003
Wang X F. Preliminary study on utilization of geothermal energy from brine of deep buried salt mine. China Well Rock Salt, 2022, 53(4): 8 doi: 10.3969/j.issn.1001-0335.2022.04.003
|
[41] |
王社教, 李峰, 閆家泓, 等. 油田地熱資源評價方法及應用. 石油學報, 2020, 41(5):553 doi: 10.7623/syxb202005004
Wang S J, Li F, Yan J H, et al. Evaluation methods and application of geothermal resources in oilfields. Acta Petrolei Sin, 2020, 41(5): 553 doi: 10.7623/syxb202005004
|
[42] |
李克文, 王磊, 毛小平, 等. 油田伴生地熱資源評價與高效開發. 科技導報, 2012, 30(32):32 doi: 10.3981/j.issn.1000-7857.2012.32.003
Li K W, Wang L, Mao X P, et al. Evaluation and efficient development of geothermal resource associated with oilfield. Sci Technol Rev, 2012, 30(32): 32 doi: 10.3981/j.issn.1000-7857.2012.32.003
|
[43] |
高德君. 重視油田地熱資源開發利用優勢 推動綠色發展——以勝利油田為例. 中國國土資源經濟, 2017, 30(4):30 doi: 10.3969/j.issn.1672-6995.2017.04.008
Gao D J. Paying attention to the exploitation and utilization advantages of geothermal resources in oilfields to promote its green development—A case study of Shengli Oilfield. Nat Resour Econ China, 2017, 30(4): 30 doi: 10.3969/j.issn.1672-6995.2017.04.008
|
[44] |
Wang S J, Yan J H, Li F, et al. Exploitation and utilization of oilfield geothermal resources in China. Energies, 2016, 9(10): 798 doi: 10.3390/en9100798
|
[45] |
徐宇, 李孜軍, 賈敏濤, 等. 深部礦井熱害治理協同地熱能開采構想及方法分析. 中國有色金屬學報, 2022, 32(5):1515
Xu Y, Li Z J, Jia M T, et al. Conceptualization and method for synergetic mining of geothermal energy as solution to heat hazard control in deep mines. Chin J Nonferrous Met, 2022, 32(5): 1515
|
[46] |
張永亮, 劉耀香, 陳喜山. 膠東半島礦山地熱資源利用方法. 金屬礦山, 2014(5):158
Zhang Y L, Liu Y X, Chen X S. Utilization methods of geothermal resources in Jiaodong peninsula mines. Met Mine, 2014(5): 158
|
[47] |
劉建功. 冀中能源低碳生態礦山建設的研究與實踐. 煤炭學報, 2011, 36(2):317 doi: 10.13225/j.cnki.jccs.2011.02.031
Liu J G. Study and practice of low-carbon ecological mining construction of Jizhong energy group. J China Coal Soc, 2011, 36(2): 317 doi: 10.13225/j.cnki.jccs.2011.02.031
|
[48] |
Wang C L, Cheng L, Hao Y J, et al. Efficiency improvement and application of the groundwater heat pump cooling system in linglong gold mine. Geofluids, 2022: 3191735
|
[49] |
何滿潮, 郭平業, 陳學謙, 等. 三河尖礦深井高溫體特征及其熱害控制方法. 巖石力學與工程學報, 2010, 29(增刊1): 2593
He M C, Guo P Y, Chen X Q, et al. Research on characteristics of high-temperature and control of heat-harm of sanhejian coal mine. Chin J Rock Mech Eng, 2010, 29(Suppl 1): 2593
|
[50] |
何滿潮, 徐敏. HEMS深井降溫系統研發及熱害控制對策. 巖石力學與工程學報, 2008, 27(7):1353 doi: 10.3321/j.issn:1000-6915.2008.07.007
He M C, Xu M. Research and development of hems cooling system and heat-harm control in deep mine. Chin J Rock Mech Eng, 2008, 27(7): 1353 doi: 10.3321/j.issn:1000-6915.2008.07.007
|
[51] |
Ping Q, He M C, Meng L, et al. Working principle and application of HEMS with lack of a cold source. Min Sci Technol China, 2011, 21(3): 433 doi: 10.1016/j.mstc.2011.05.017
|
[52] |
Wang J B, Wang X P, Zhang Q, et al. Dynamic prediction model for surface settlement of horizontal salt rock energy storage. Energy, 2021, 235: 121421 doi: 10.1016/j.energy.2021.121421
|
[53] |
樊傳忠. 在超深鹽礦中開采地熱的設想. 中國鹽業, 2016(18):40 doi: 10.19396/j.cnki.issn1004-9169.2016.18.009
Fan C Z. Tentative idea of exploiting geothermal energy in ultra-deep salt mines. China Salt Ind, 2016(18): 40 doi: 10.19396/j.cnki.issn1004-9169.2016.18.009
|
[54] |
汪集暘, 邱楠生, 胡圣標, 等. 中國油田地熱研究的進展和發展趨勢. 地學前緣, 2017, 24(3):1 doi: 10.13745/j.esf.2017.03.001
Wang J Y, Qiu N S, Hu S B, et al. Advancement and developmental trend in the geothermics of oil fields in China. Earth Sci Front, 2017, 24(3): 1 doi: 10.13745/j.esf.2017.03.001
|
[55] |
李金鹿, 陳安國. 河北省地熱開發利用模式分析. 中國國土資源經濟, 2013, 26(8):28 doi: 10.3969/j.issn.1672-6995.2013.08.007
Li J L, Chen A G. Analysis on geothermal exploitation and utilization pattern in Hebei Province. Nat Resour Econ China, 2013, 26(8): 28 doi: 10.3969/j.issn.1672-6995.2013.08.007
|
[56] |
Lawrence Berkeley National Laboratory. Extracting lithium from geothermal brine to develop a domestic source of critical energy resource [J/OL]. SciTechDaily (2021-12-01) [2022-08-24].https://scitechdaily.com/extracting-lithium-from-geothermal-brine-to-develop-a-domestic-source-of-critical-energy-resource/
|
[57] |
Olasolo P, Juárez M C, Morales M P, et al. Enhanced geothermal systems (EGS): A review. Renew Sustain Energy Rev, 2016, 56: 133 doi: 10.1016/j.rser.2015.11.031
|
[58] |
Zhao J, Tang C A, Wang S J. Excavation based enhanced geothermal system (EGS-E): introduction to a new concept. Geomech Geophys Geo-Energ Geo-Resour, 2020, 6(1): 6 doi: 10.1007/s40948-019-00127-y
|
[59] |
亢方超, 唐春安. 基于開挖的增強型地熱系統概述. 地學前緣, 2020, 27(1):185 doi: 10.13745/j.esf.2020.1.20
Kang F C, Tang C A. Overview of enhanced geothermal system (EGS) based on excavation in China. Earth Sci Front, 2020, 27(1): 185 doi: 10.13745/j.esf.2020.1.20
|
[60] |
Tang M, Li H, Tang C A. Study on preliminarily estimating performance of elementary deep underground engineering structures in future large-scale heat mining projects. Geofluids, 2019: 3456307
|
[61] |
宋健, 唐春安, 亢方超. 深部礦產與地熱資源協同開采模式. 金屬礦山, 2020(5):124 doi: 10.19614/j.cnki.jsks.202005018
Song J, Tang C A, Kang F C. Synergetic mining mode of deep mineral and geothermal resources. Met Mine, 2020(5): 124 doi: 10.19614/j.cnki.jsks.202005018
|
[62] |
劉浪, 辛杰, 張波, 等. 礦山功能性充填基礎理論與應用探索. 煤炭學報, 2018, 43(7):1811 doi: 10.13225/j.cnki.jccs.2017.1626
Liu L, Xin J, Zhang B, et al. Basic theories and applied exploration of functional backfill in mines. J China Coal Soc, 2018, 43(7): 1811 doi: 10.13225/j.cnki.jccs.2017.1626
|
[63] |
張波, 薛攀源, 劉浪, 等. 深部充填礦井的礦床-地熱協同開采方法探索. 煤炭學報, 2021, 46(9):2824 doi: 10.13225/j.cnki.jccs.2020.1596
Zhang B, Xue P Y, Liu L, et al. Exploration on the method of ore deposit-geothermal energy synergetic mining in deep backfill mines. J China Coal Soc, 2021, 46(9): 2824 doi: 10.13225/j.cnki.jccs.2020.1596
|
[64] |
Li B Y, Zhang J X, Ghoreishi-Madiseh S A, et al. Energy performance of seasonal thermal energy storage in underground backfilled stopes of coal mines. J Clean Prod, 2020, 275: 122647 doi: 10.1016/j.jclepro.2020.122647
|
[65] |
張小艷, 文德, 趙玉嬌, 等. 礦山蓄熱/儲能充填體的熱-力性能與傳熱過程. 煤炭學報, 2021, 46(10):3158 doi: 10.13225/j.cnki.jccs.2020.1457
Zhang X Y, Wen D, Zhao Y J, et al. Thermal-mechanical properties and heat transfer process of heat storage/energy storage backfill body in mine. J China Coal Soc, 2021, 46(10): 3158 doi: 10.13225/j.cnki.jccs.2020.1457
|
[66] |
Hartai é, Bodó B. Combining energy production and mineral extraction–The CHPM2030 project. Eur Geol, 2017(43): 6
|
[67] |
宋先知, 許富強, 宋國鋒. 廢棄井地熱能開發技術現狀與發展建議. 石油鉆探技術, 2020, 48(6):1 doi: 10.11911/syztjs.2020120
Song X Z, Xu F Q, Song G F. Technical status and development suggestions in exploiting geothermal energy from abandoned wells. Pet Drill Tech, 2020, 48(6): 1 doi: 10.11911/syztjs.2020120
|
[68] |
Hall A, Scott J A, Shang H. Geothermal energy recovery from underground mines. Renew Sustain Energy Rev, 2011, 15(2): 916 doi: 10.1016/j.rser.2010.11.007
|
[69] |
浦海, 卞正富, 張吉雄, 等. 一種廢棄礦井地熱資源再利用系統研究. 煤炭學報, 2021, 46(2):677 doi: 10.13225/j.cnki.jccs.xr20.1845
Pu H, Bian Z F, Zhang J X, et al. Research on a reuse mode of geothermal resources in abandoned coal mines. J China Coal Soc, 2021, 46(2): 677 doi: 10.13225/j.cnki.jccs.xr20.1845
|
[70] |
Guo P Y, Zheng L G, Sun X M, et al. Sustainability evaluation model of geothermal resources in abandoned coal mine. Appl Therm Eng, 2018, 144: 804 doi: 10.1016/j.applthermaleng.2018.06.070
|
[71] |
Bao T, Cao H, Qin Y H, et al. Critical insights into thermohaline stratification for geothermal energy recovery from flooded mines with mine water. J Clean Prod, 2020, 273: 122989 doi: 10.1016/j.jclepro.2020.122989
|
[72] |
Menéndez J, Ordó?ez A, álvarez R, et al. Energy from closed mines: Underground energy storage and geothermal applications. Renew Sustain Energy Rev, 2019, 108: 498 doi: 10.1016/j.rser.2019.04.007
|