<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 10
Sep.  2022
Turn off MathJax
Article Contents
ZHANG Bo, ZHAN Rui, LIU Lang, HUAN Chao, ZHAO Yu-jiao, WANG Mei. Performance of a horizontal square-spiral-type backfill heat exchanger in a deep mine and its coupled heat pump system[J]. Chinese Journal of Engineering, 2022, 44(10): 1719-1732. doi: 10.13374/j.issn2095-9389.2022.07.20.001
Citation: ZHANG Bo, ZHAN Rui, LIU Lang, HUAN Chao, ZHAO Yu-jiao, WANG Mei. Performance of a horizontal square-spiral-type backfill heat exchanger in a deep mine and its coupled heat pump system[J]. Chinese Journal of Engineering, 2022, 44(10): 1719-1732. doi: 10.13374/j.issn2095-9389.2022.07.20.001

Performance of a horizontal square-spiral-type backfill heat exchanger in a deep mine and its coupled heat pump system

doi: 10.13374/j.issn2095-9389.2022.07.20.001
More Information
  • Corresponding author: E-mail: liulang@xust.edu.cn
  • Received Date: 2022-07-20
    Available Online: 2022-08-18
  • Publish Date: 2022-10-25
  • Geothermal resources are abundant in deep mines. Functional backfill technology combines deep mining and deep geothermal mining to achieve a win-win situation for mineral and geothermal resource development and is an important measure for extending the life of deep mines. In this paper, on the basis of an analysis of the research status of geothermal resource extraction through tubes embedded in backfill bodies in mines, a horizontal square-spiral-type backfill heat exchangers (S-S BHE) is proposed. Considering the significant influence of groundwater advection on the heat extraction of backfill heat exchangers (BHE) in mines and the relative scarcity of previous studies, a verified three-dimensional unsteady BHE model coupling heat transfer and seepage are established using COMSOL software. Based on this model, a mathematical model of the backfill heat exchanger coupled heat pump (BHECHP), and four comprehensive evaluation indicators are established. Firstly, the performance of the S-S BHE is compared with that of two typical serpentine BHEs under the same geometric and physical conditions. The results show that the S-S BHE performs better than the two serpentine BHEs across the board, and the advantage is more substantial under situations of higher permeability flow. Secondly, the characteristics of the S-S BHE and its coupled heat pump are examined in relation to the in-tube flow rate, tube spacing, seepage velocity, and inlet water temperature. The in-tube flow rate and seepage velocity are found to have the most significant effects on the comprehensive evaluation indicators. The average heat transfer power per unit of tube length increases with flow rate, but the heating seasonal performance factor (HSPF) decreases obviously. The analysis revealed an optimum interval of 0.4–0.6 m·s?1 for the flow rate in the tube, where the flow of circulating water in the tube is in transition from the transition zone to the fully turbulent flow zone. The effect of seepage velocity is negligible at less than 10–6 m·s?1, and all comprehensive evaluation indicators present linearly increasing trends in the usual seepage range of 10–6 to 10–5 m·s?1. Finally, an ecological evaluation of the S-S BHECHP was conducted. A comparison with traditional heating methods reveals that the heating method using S-S BHECHP has a significant energy saving and carbon reduction effect. The primary energy consumption and carbon emissions of the S-S BHECHP are reduced by 83.39%, 61.57%, and 56.84% compared to the regenerative electric boiler, coal-fired boiler, and air-source heat pump, respectively. The findings of this study show how well the S-S BHE and the S-S BHECHP performance, and they also provide some theoretical recommendations for the application and exploration of heat storage/energy storage functional backfill in deep mines.

     

  • loading
  • [1]
    蔡美峰, 薛鼎龍, 任奮華. 金屬礦深部開采現狀與發展戰略. 工程科學學報, 2019, 41(4):417

    Cai M F, Xue D L, Ren F H. Current status and development strategy of metal mines. Chin J Eng, 2019, 41(4): 417
    [2]
    Cai M F, Li P, Tan W H, et al. Key engineering technologies to achieve green, intelligent, and sustainable development of deep metal mines in China. Engineering, 2021, 7(11): 1513 doi: 10.1016/j.eng.2021.07.010
    [3]
    何滿潮, 郭平業. 深部巖體熱力學效應及溫控對策. 巖石力學與工程學報, 2013, 32(12):2377

    He M C, Guo P Y. Deep rock mass thermodynamic effect and temperature control measures. Chin J Rock Mech Eng, 2013, 32(12): 2377
    [4]
    Jessop A M, MacDonald J K, Spence H. Clean energy from abandoned mines at springhill, nova Scotia. Energy Sources, 1995, 17(1): 93 doi: 10.1080/00908319508946072
    [5]
    Hall A, Scott J A, Shang H. Geothermal energy recovery from underground mines. Renew Sustain Energy Rev, 2011, 15(2): 916 doi: 10.1016/j.rser.2010.11.007
    [6]
    Watzlaf G R, Ackman T E. Underground mine water for heating and cooling using geothermal heat pump systems. Mine Water Environ, 2006, 25(1): 1 doi: 10.1007/s10230-006-0103-9
    [7]
    Kranz K, Dillenardt J. Mine water utilization for geothermal purposes in freiberg, Germany: Determination of hydrogeological and thermophysical rock parameters. Mine Water Environ, 2010, 29(1): 68 doi: 10.1007/s10230-009-0094-4
    [8]
    Mustafa Omer A. Ground-source heat pumps systems and applications. Renew Sustain Energy Rev, 2008, 12(2): 344 doi: 10.1016/j.rser.2006.10.003
    [9]
    Aresti L, Christodoulides P, Florides G. A review of the design aspects of ground heat exchangers. Renew Sustain Energy Rev, 2018, 92: 757 doi: 10.1016/j.rser.2018.04.053
    [10]
    Ghoreishi-Madiseh S A, Hassani F, Abbasy F. Numerical and experimental study of geothermal heat extraction from backfilled mine stopes. Appl Therm Eng, 2015, 90: 1119 doi: 10.1016/j.applthermaleng.2014.11.023
    [11]
    劉浪, 辛杰, 張波, 等. 礦山功能性充填基礎理論與應用探索. 煤炭學報, 2018, 43(7):1811

    Liu L, Xin J, Zhang B, et al. Basic theories and applied exploration of functional backfill in mines. J China Coal Soc, 2018, 43(7): 1811
    [12]
    張波, 薛攀源, 劉浪, 等. 深部充填礦井的礦床-地熱協同開采方法探索. 煤炭學報, 2021, 46(9):2824

    Zhang B, Xue P Y, Liu L, et al. Exploration on the method of ore deposit-geothermal energy synergetic mining in deep backfill mines. J China Coal Soc, 2021, 46(9): 2824
    [13]
    Li B Y, Zhang J X, Ghoreishi-Madiseh S A, et al. Energy performance of seasonal thermal energy storage in underground backfilled stopes of coal mines. J Clean Prod, 2020, 275: 122647 doi: 10.1016/j.jclepro.2020.122647
    [14]
    Zhang X Y, Zhao M, Liu L, et al. Numerical simulation on heat storage performance of backfill body based on tube-in-tube heat exchanger. Constr Build Mater, 2020, 265: 120340 doi: 10.1016/j.conbuildmat.2020.120340
    [15]
    Zhao Y J, Liu L, Wen D, et al. Experimental study of horizontal ground heat exchangers embedded in the backfilled mine stopes. Geothermics, 2022, 100: 102344 doi: 10.1016/j.geothermics.2021.102344
    [16]
    Zhao Y J, Liu L, Wen D, et al. Recycling waste material for backfill coupled heat exchanger systems in underground stopes of mines. Energy Build, 2022, 256: 111703 doi: 10.1016/j.enbuild.2021.111703
    [17]
    Huan C, Zhang S, Zhao X X, et al. Thermal performance of cemented paste backfill body considering its slurry sedimentary characteristics in underground backfill stopes. Energies, 2021, 14(21): 7400 doi: 10.3390/en14217400
    [18]
    Gao R, Li A G, Zhang O, et al. Comparison of indoor air temperatures of different under-floor heating pipe layouts. Energy Convers Manag, 2011, 52(2): 1295 doi: 10.1016/j.enconman.2010.09.027
    [19]
    於仲義, 陳焰華, 胡平放. 基于滲流型傳熱機制的地埋管換熱特性研究. 湖南大學學報(自然科學版), 2009, 36(S2): 63

    Yu Z Y, Chen Y H, Hu P F. Research on heat transfer characteristic of U-tube ground heat exchangers based on seepage heat transfer mechanism. J Hunan Univ (Nat Sci), 2009, 36(Sup 2): 63
    [20]
    Li C F, Cleall P J, Mao J F, et al. Numerical simulation of ground source heat pump systems considering unsaturated soil properties and groundwater flow. Appl Therm Eng, 2018, 139: 307 doi: 10.1016/j.applthermaleng.2018.04.142
    [21]
    Chen K, Zheng J, Li J, et al. Numerical study on the heat performance of enhanced coaxial borehole heat exchanger and double U borehole heat exchanger. Appl Therm Eng, 2022, 203: 117916 doi: 10.1016/j.applthermaleng.2021.117916
    [22]
    Wang Y, Liu Z C, Yuan X L, et al. Investigation of the influence of groundwater seepage on the heat transfer characteristics of a ground source heat pump system with a 9-well group. Build Simul, 2019, 12(5): 857 doi: 10.1007/s12273-019-0526-4
    [23]
    Guan Y L, Zhao X L, Wang G J, et al. 3D dynamic numerical programming and calculation of vertical buried tube heat exchanger performance of ground-source heat pumps under coupled heat transfer inside and outside of tube. Energy Build, 2017, 139: 186 doi: 10.1016/j.enbuild.2017.01.023
    [24]
    張志明, 張義盼. 基于Hazen-Williams公式的長距離輸水管道流量計算研究. 工程建設與設計, 2019(11):66 doi: 10.13616/j.cnki.gcjsysj.2019.06.023

    Zhang Z M, Zhang Y P. Research on flow calculation of long distance pipeline depend on hazen-williams formula. Constr &Des Eng, 2019(11): 66 doi: 10.13616/j.cnki.gcjsysj.2019.06.023
    [25]
    Kahraman A, ?elebi A. Investigation of the performance of a heat pump using waste water as a heat source. Energies, 2009, 2(3): 697 doi: 10.3390/en20300697
    [26]
    Casasso A, Sethi R. Efficiency of closed loop geothermal heat pumps: A sensitivity analysis. Renew Energy, 2014, 62: 737 doi: 10.1016/j.renene.2013.08.019
    [27]
    Sanner B, Karytsas C, Mendrinos D, et al. Current status of ground source heat pumps and underground thermal energy storage in Europe. Geothermics, 2003, 32(4-6): 579 doi: 10.1016/S0375-6505(03)00060-9
    [28]
    Hein P, Kolditz O, G?rke U J, et al. A numerical study on the sustainability and efficiency of borehole heat exchanger coupled ground source heat pump systems. Appl Therm Eng, 2016, 100: 421 doi: 10.1016/j.applthermaleng.2016.02.039
    [29]
    Xia C C, Sun M, Zhang G Z, et al. Experimental study on geothermal heat exchangers buried in diaphragm walls. Energy Build, 2012, 52: 50 doi: 10.1016/j.enbuild.2012.03.054
    [30]
    Li Y, Mao J F, Geng S B, et al. Evaluation of thermal short-circuiting and influence on thermal response test for borehole heat exchanger. Geothermics, 2014, 50: 136 doi: 10.1016/j.geothermics.2013.09.010
    [31]
    Li B, Han Z W, Meng X W, et al. Study on the influence of the design method of the ground source heat pump system with considering groundwater seepage. Appl Therm Eng, 2019, 160: 114016 doi: 10.1016/j.applthermaleng.2019.114016
    [32]
    Guo L L, Zhang J, Li Y R, et al. Experimental and numerical investigation of the influence of groundwater flow on the borehole heat exchanger performance: A case study from Tangshan, China. Energy Build, 2021, 248: 111199 doi: 10.1016/j.enbuild.2021.111199
    [33]
    Zhang L P, Gudmundsson O, Thorsen J E, et al. Method for reducing excess heat supply experienced in typical Chinese District heating systems by achieving hydraulic balance and improving indoor air temperature control at the building level. Energy, 2016, 107: 431 doi: 10.1016/j.energy.2016.03.138
    [34]
    張鳳霞, 田貫三, 魏景源. 不同能源類型供熱方式環保與經濟性比較. 煤氣與熱力, 2016, 36(10):14 doi: 10.3969/j.issn.1000-4416.2016.10.001

    Zhang F X, Tian G S, Wei J Y. Environmental and economic comparison among heating modes using different types of energy sources. Gas &Heat, 2016, 36(10): 14 doi: 10.3969/j.issn.1000-4416.2016.10.001
    [35]
    江億, 楊秀. 在能源分析中采用等效電方法. 中國能源, 2010, 32(5):5 doi: 10.3969/j.issn.1003-2355.2010.05.001

    Jiang Y, Yang X. Electricity equivalent application in energy analysis. Energy China, 2010, 32(5): 5 doi: 10.3969/j.issn.1003-2355.2010.05.001
    [36]
    張建國, 劉海燕, 張建民, 等. 節能項目節能量與減排量計算及價值分析. 中國能源, 2009, 31(5):26 doi: 10.3969/j.issn.1003-2355.2009.05.006

    Zhang J G, Liu H Y, Zhang J M, et al. Calculation of energy savings and GHGs emission reduction of energy conservation project and value analysis. Energy China, 2009, 31(5): 26 doi: 10.3969/j.issn.1003-2355.2009.05.006
    [37]
    Li H, Ni L, Yao Y, et al. Annual performance experiments of an earth-air heat exchanger fresh air-handling unit in severe cold regions: Operation, economic and greenhouse gas emission analyses. Renew Energy, 2020, 146: 25 doi: 10.1016/j.renene.2019.06.058
    [38]
    賀平, 孫剛, 王飛, 等. 供熱工程. 4版. 北京: 中國建筑工業出版社, 2009

    He P, Sun G, Wang F, et al. Heating Engineering. 4th Ed. Beijing: China Architecture & Building Press, 2009
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(24)  / Tables(3)

    Article views (489) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频