<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 10
Sep.  2022
Turn off MathJax
Article Contents
ZHANG Ying, GUO Qi-feng, XI Xun, CAI Mei-feng, LUN Jia-yun, PAN Ji-liang. Experimental investigation on hydromechanical coupling-induced failure and permeability evolution for sandstone with multiple-shape prefabricated fractures[J]. Chinese Journal of Engineering, 2022, 44(10): 1778-1788. doi: 10.13374/j.issn2095-9389.2022.07.04.004
Citation: ZHANG Ying, GUO Qi-feng, XI Xun, CAI Mei-feng, LUN Jia-yun, PAN Ji-liang. Experimental investigation on hydromechanical coupling-induced failure and permeability evolution for sandstone with multiple-shape prefabricated fractures[J]. Chinese Journal of Engineering, 2022, 44(10): 1778-1788. doi: 10.13374/j.issn2095-9389.2022.07.04.004

Experimental investigation on hydromechanical coupling-induced failure and permeability evolution for sandstone with multiple-shape prefabricated fractures

doi: 10.13374/j.issn2095-9389.2022.07.04.004
More Information
  • Corresponding author: E-mail: xixun@ustb.edu.cn
  • Received Date: 2022-07-04
    Available Online: 2022-08-18
  • Publish Date: 2022-10-25
  • In mineral and geothermal resource co-mining, the underground rock is often affected by mining stress, and fractures of different shapes, such as single fractures, T-shaped fractures, and Y-shaped fractures, are generated. To increase the reservoir permeability, the existing fractures need to be reactivated, causing them to expand under force and propagate in shear and tension modes, generating new fractures and finally forming a fracture network to increase permeability. Waterjet cutting and wire cutting equipment are used to prefabricate sandstone samples with different inclinations and single, T-shaped, and Y-shaped fractures on standard samples. This paper conducts hydromechanical coupling experiments to investigate the possibility of increasing permeability by expanding and merging fractures in prefabricated fractured sandstone samples under triaxial conditions. In addition, the focus is on mechanical properties, such as critical thresholds (crack closure stress, crack initiation stress, damage stress, and peak strength), elastic moduli, and Poisson's ratio, and the failure modes of multiple-shape prefabricated fracture sandstone samples are mainly studied. Simultaneously, the evolution law of acoustic emission and permeability during the progressive failure of fractured rock is studied, and the mechanism of permeability enhancement of fractured rocks under the action of hydraulic coupling is analyzed. The results show that under the action of hydromechanical coupling, all multi-shape prefabricated fracture specimens form secondary cracks that expand in tensile, shearing, or mixed modes through the existing fractures and generate new fractures or fracture networks, which can effectively increase the flow rate. All single-fracture specimens are shear failures, and the T-shaped and Y-shaped fracture specimens have two types of shear failure and tension-shear failure. Furthermore, the weakening effect of water has a smaller effect on strength than the effect of multiple-shape prefabricated fractures. With increasing axial pressure, the rock permeability first decreases and then increases in the pre-peak stage, and the jump coefficient increases when reaching the strength failure. When the stress suddenly drops after the peak of the sample, the permeability reaches the maximum value, and the permeability enhancement effect is the best. The change in the prefabricated fracture angles and shapes has a small influence on the jump coefficient. The average value of the jump coefficients of a single fracture is larger than that of a Y-shaped fracture, which is larger than that of a T-shaped fracture, and the jump coefficients are more than doubled. These observational and experimental results will help to understand fracture failure and fluid flow behavior, which will guide the engineering applications of mineral and geothermal resource co-mining.

     

  • loading
  • [1]
    蔡美峰, 多吉, 陳湘生, 等. 深部礦產和地熱資源共采戰略研究. 中國工程科學, 2021, 23(6):43

    Cai M F, Duo J, Chen X S, et al. Development strategy for co-mining of the deep mineral and geothermal resources. Strateg Study CAE, 2021, 23(6): 43
    [2]
    宋健, 唐春安, 亢方超. 深部礦產與地熱資源協同開采模式. 金屬礦山, 2020(5):124

    Song J, Tang C A, Kang F C. Synergetic mining mode of deep mineral and geothermal resources. Met Mine, 2020(5): 124
    [3]
    李長輝. 地熱資源類型及發展前景. 青海國土經略, 2014(4):48 doi: 10.3969/j.issn.1671-8704.2014.04.019

    Li C H. Types and development prospects of geothermal resources. Manage Strategy Qinghai Land Resour, 2014(4): 48 doi: 10.3969/j.issn.1671-8704.2014.04.019
    [4]
    周總瑛, 劉世良, 劉金俠. 中國地熱資源特點與發展對策. 自然資源學報, 2015, 30(7):1210 doi: 10.11849/zrzyxb.2015.07.013

    Zhou Z Y, Liu S L, Liu J X. Study on the characteristics and development strategies of geothermal resources in China. J Nat Resour, 2015, 30(7): 1210 doi: 10.11849/zrzyxb.2015.07.013
    [5]
    王貴玲, 張薇, 梁繼運, 等. 中國地熱資源潛力評價. 地球學報, 2017, 38(4):449 doi: 10.3975/cagsb.2017.04.02

    Wang G L, Zhang W, Liang J Y, et al. Evaluation of geothermal resources potential in China. Acta Geosci Sin, 2017, 38(4): 449 doi: 10.3975/cagsb.2017.04.02
    [6]
    王轉轉, 歐成華, 王紅印, 等. 國內地熱資源類型特征及其開發利用進展. 水利水電技術, 2019, 50(6):187

    Wang Z Z, Ou C H, Wang H Y, et al. The characteristics and development of geothermal resources in China. Water Resour Hydropower Eng, 2019, 50(6): 187
    [7]
    Brace W F, Bombolakis E G. A note on brittle crack growth in compression. J Geophys Res, 1963, 68(12): 3709 doi: 10.1029/JZ068i012p03709
    [8]
    Nemat-Nasser S, Horii H. Compression-induced nonplanar crack extension with application to splitting, exfoliation, and rockburst. J Geophys Res Solid Earth, 1982, 87(B8): 6805 doi: 10.1029/JB087iB08p06805
    [9]
    Ashby M F, Hallam S D. The failure of brittle solids containing small cracks under compressive stress states. Acta Metall, 1986, 34(3): 497 doi: 10.1016/0001-6160(86)90086-6
    [10]
    Cannon N P, Schulson E M, Smith T R, et al. Wing cracks and brittle compressive fracture. Acta Metall Mater, 1990, 38(10): 1955 doi: 10.1016/0956-7151(90)90307-3
    [11]
    黃梅, 肖桃李. 單軸壓縮條件下預制單裂隙類巖石的力學和變形特性研究. 長江大學學報(自然科學版), 2020, 17(1):115

    Huang M, Xiao T L. Mechanical and deformation characteristics of prefabricated single-fracture rock-like under uniaxial compression. J Yangtze Univ Nat Sci Ed, 2020, 17(1): 115
    [12]
    韓震宇, 李地元, 朱泉企, 等. 含端部裂隙大理巖單軸壓縮破壞及能量耗散特性. 工程科學學報, 2020, 42(12):1588

    Han Z Y, Li D Y, Zhu Q Q, et al. Uniaxial compression failure and energy dissipation of marble specimens with flaws at the end surface. Chin J Eng, 2020, 42(12): 1588
    [13]
    郭奇峰, 武旭, 蔡美峰, 等. 預制裂隙花崗巖的強度特征與破壞模式試驗. 工程科學學報, 2019, 41(1):43

    Guo Q F, Wu X, Cai M F, et al. Experiment on the strength characteristics and failure modes of granite with pre-existing cracks. Chin J Eng, 2019, 41(1): 43
    [14]
    張杰, 郭奇峰, 蔡美峰, 等. 循環擾動荷載作用下花崗巖中裂隙萌生擴展過程的顆粒流模擬. 工程科學學報, 2021, 43(5):636

    Zhang J, Guo Q F, Cai M F, et al. Particle flow simulation of the crack propagation characteristics of granite under cyclic load. Chin J Eng, 2021, 43(5): 636
    [15]
    Lee H, Jeon S. An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression. Int J Solids Struct, 2011, 48(6): 979 doi: 10.1016/j.ijsolstr.2010.12.001
    [16]
    Modiriasari A, Bobet A, Pyrak-Nolte L J. Monitoring rock damage caused by cyclic loading using seismic wave transmission and reflection // Proceedings of 50th U. S. Rock Mechanics/Geomechanics Symposium. Houston, 2016: 569
    [17]
    Petit J P, Barquins M. Can natural faults propagate under Mode II conditions? Tectonics, 1988, 7(6): 1243
    [18]
    Bobet A, Einstein H H. Fracture coalescence in rock-type materials under uniaxial and biaxial compression. Int J Rock Mech Min Sci, 1998, 35(7): 863 doi: 10.1016/S0148-9062(98)00005-9
    [19]
    Saimoto A, Nisitani H. Crack propagation criterion and simulation under biaxial loading[J/OL]. WTI Press (2002-09-25)[2022-07-04].https://www.witpress.com/Secure/elibrary/papers/DM02/DM02009FU.pdf
    [20]
    Mughieda O, Karasneh I. Coalescence of offset rock joints under biaxial loading. Geotech Geol Eng, 2006, 24(4): 985 doi: 10.1007/s10706-005-8352-0
    [21]
    Liu X W, Liu Q S, Huang S B, et al. Fracture propagation characteristic and micromechanism of rock-like specimens under uniaxial and biaxial compression. Shock Vib, 2016, 2016: 1
    [22]
    Yang S Q, Jiang Y Z, Xu W Y, et al. Experimental investigation on strength and failure behavior of pre-cracked marble under conventional triaxial compression. Int J Solids Struct, 2008, 45(17): 4796 doi: 10.1016/j.ijsolstr.2008.04.023
    [23]
    Huang D, Gu D M, Yang C, et al. Investigation on mechanical behaviors of sandstone with two preexisting flaws under triaxial compression. Rock Mech Rock Eng, 2016, 49(2): 375 doi: 10.1007/s00603-015-0757-3
    [24]
    趙程, 幸金權, 牛佳倫, 等. 水-力共同作用下預制裂隙類巖石試樣裂紋擴展試驗研究. 巖石力學與工程學報, 2019, 38(S1): 2823

    Zhao C, Xing J Q, Niu J L, et al. Experimental study on crack propagation of precrack rock-like specimens under hydro-mechanical coupling. Chin J Rock Mech Eng, 2019, 38(Suppl 1): 2823
    [25]
    李勇, 蔡衛兵, 朱維申, 等. 水力耦合作用下裂紋擴展演化機理的試驗和顆粒流分析. 工程科學與技術, 2020, 52(3):21

    Li Y, Cai W B, Zhu W S, et al. Experiment and particle flow analysis of crack propagation evolution mechanism under hydraulic coupling. Adv Eng Sci, 2020, 52(3): 21
    [26]
    魏超, 朱維申, 李勇, 等. 巖石傾斜裂隙與水平裂隙擴展貫通試驗及數值模擬研究. 巖土力學, 2019, 40(11):4533

    Wei C, Zhu W S, Li Y, et al. Experimental study and numerical simulation of inclined flaws and horizontal fissures propagation and coalescence process in rocks. Rock Soil Mech, 2019, 40(11): 4533
    [27]
    Min K S, Zhang Z, Ghassemi A. Numerical analysis of multiple fracture propagation in heterogeneous rock // Proceedings of 44th U. S. Rock Mechanics Symposium and 5th U. S. -Canada Rock Mechanics Symposium. Salt Lake City, 2010: 363
    [28]
    Kamali A, Ghassemi A. Analysis of injection-induced shear slip and fracture propagation in geothermal reservoir stimulation. Geothermics, 2018, 76: 93 doi: 10.1016/j.geothermics.2018.07.002
    [29]
    Yang Y N, Ren X Y, Zhou L, et al. Numerical study on competitive propagation of multi-perforation fractures considering full hydro-mechanical coupling in fracture-pore dual systems. J Petroleum Sci Eng, 2020, 191: 107109 doi: 10.1016/j.petrol.2020.107109
    [30]
    Kamali A, Ghassemi A. Analysis of natural fracture shear slip and propagation in response to injection // Proceedings of Stanford Geothermal Workshop. Stanford, 2016: 22
    [31]
    張銘. 低滲透巖石實驗理論及裝置. 巖石力學與工程學報, 2003, 22(6):919 doi: 10.3321/j.issn:1000-6915.2003.06.007

    Zhang M. Theory and apparatus for testing low-permeability of rocks in laboratory. Chin J Rock Mech Eng, 2003, 22(6): 919 doi: 10.3321/j.issn:1000-6915.2003.06.007
    [32]
    王鵬飛, 李長洪, 馬學文, 等. 斷層帶不同含石率土石混合體滲流特性試驗研究. 巖土力學, 2018, 39(S2): 53

    Wang P F, Li C H, Ma X W, et al. Experimental study of seepage characteristics of soil-rock mixture with different rock contents in fault zone. Rock Soil Mech, 2018, 39(Suppl 2): 53
    [33]
    Zhang Y, Wu X, Guo Q F, et al. Research on the mechanical properties and damage constitutive model of multi-shape fractured sandstone under hydro-mechanical coupling. Minerals, 2022, 12(4): 436 doi: 10.3390/min12040436
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article views (432) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频