Citation: | MA Xiao-jia, TANG Xue-jing, JIN Feng-xian, SHEN Bo-xiong, GUO Sheng-qi. Research advancements in the use of TiO2-based materials for the photocatalytic degradation of volatile organic compounds[J]. Chinese Journal of Engineering, 2023, 45(4): 590-601. doi: 10.13374/j.issn2095-9389.2022.05.25.006 |
[1] |
álvarez-García S, Gutiérrez S, Casquero P A. Use of VOC Chambers to evaluate the impact of microbial volatile compounds on dry grain insect pests. MethodsX, 2022, 9: 101734 doi: 10.1016/j.mex.2022.101734
|
[2] |
Liu C H, Gao J C. Analysis on the hazard control technology of volatile organic compounds. IOP Conf Ser Earth Environ Sci. 2021, 791(1): 012166
|
[3] |
王學川, 宋云云, 韓慶鑫. TiO2及其復合材料光催化降解室內甲醛的研究進展. 功能材料, 2021, 52(5):5076 doi: 10.3969/j.issn.1001-9731.2021.05.011
Wang X C, Song Y Y, Han Q X. Research progress of photocatalytic degradation of indoor formaldehyde. J Funct Mater, 2021, 52(5): 5076 doi: 10.3969/j.issn.1001-9731.2021.05.011
|
[4] |
陳海英, 劉杰民, 袁司夷, 等. 核殼結構Fe3O4@C粒子在UV-Fenton氧化去除VOCs過程中的吸附?催化作用. 工程科學學報, 2017, 39(8):1166
Chen H Y, Liu J M, Yuan S Y, et al. Fabrication of Fe3O4@C core-shell particles and its application in UV-Fenton oxidize removal of VOCs. Chin J Eng, 2017, 39(8): 1166
|
[5] |
Yang C T, Miao G, Pi Y H, et al. Abatement of various types of VOCs by adsorption/catalytic oxidation: A review. Chem Eng J, 2019, 370: 1128 doi: 10.1016/j.cej.2019.03.232
|
[6] |
Li X, Ma J, Ling X. Design and dynamic behaviour investigation of a novel VOC recovery system based on a deep condensation process. Cryogenics, 2020, 107: 103060 doi: 10.1016/j.cryogenics.2020.103060
|
[7] |
Li T, Li H, Li C L. A review and perspective of recent research in biological treatment applied in removal of chlorinated volatile organic compounds from waste air. Chemosphere, 2020, 250: 126338 doi: 10.1016/j.chemosphere.2020.126338
|
[8] |
Chen Z L, Lin X Q, Zhang S, et al. Thermal cotreatment of municipal solid waste incineration fly ash with sewage sludge for PCDD/Fs decomposition and reformation suppression. J Hazard Mater, 2021, 416: 126216 doi: 10.1016/j.jhazmat.2021.126216
|
[9] |
鄭鋒, 郭敏, 張梅. 水熱法制備WO3納米棒陣列及其光催化性能. 北京科技大學學報, 2014, 36(6):810
Zheng F, Guo M, Zhang M. Hydrothermal preparation of WO3 nanorod arrays and their photocatalytic properties. J Univ Sci Technol Beijing, 2014, 36(6): 810
|
[10] |
Li Z Y, Liu J D, Gao B, et al. Cu-Mn-CeOx loaded ceramic catalyst for non-thermal sterilization and microwave thermal catalysis of VOCs degradation. Chem Eng J, 2022, 442: 136288 doi: 10.1016/j.cej.2022.136288
|
[11] |
武寧, 楊忠凱, 李玉, 等. 揮發性有機物治理技術研究進展. 現代化工, 2020, 40(2):17 doi: 10.16606/j.cnki.issn0253-4320.2020.02.004
Wu N, Yang Z K, Li Y, et al. Research progress in VOCs treatment technology. Mod Chem Ind, 2020, 40(2): 17 doi: 10.16606/j.cnki.issn0253-4320.2020.02.004
|
[12] |
Castel C, Favre E. Membrane separations and energy efficiency. J Membr Sci, 2018, 548: 345 doi: 10.1016/j.memsci.2017.11.035
|
[13] |
Lincho J, Zaleska-Medynska A, Martins R C, et al. Nanostructured photocatalysts for the abatement of contaminants by photocatalysis and photocatalytic ozonation: An overview. Sci Total Environ, 2022, 837: 155776 doi: 10.1016/j.scitotenv.2022.155776
|
[14] |
Koe W S, Lee J W, Chong W C, et al. An overview of photocatalytic degradation: Photocatalysts, mechanisms, and development of photocatalytic membrane. Environ Sci Pollut Res Int, 2020, 27(3): 2522 doi: 10.1007/s11356-019-07193-5
|
[15] |
Xu C P, Ravi Anusuyadevi P, Aymonier C, et al. Nanostructured materials for photocatalysis. Chem Soc Rev, 2019, 48(14): 3868 doi: 10.1039/C9CS00102F
|
[16] |
Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37 doi: 10.1038/238037a0
|
[17] |
姜林文, 劉維良, 武安華, 等. 低溫燃燒法合成納米二氧化鈦粉體研究. 北京科技大學學報, 2012, 34(11):1314 doi: 10.13374/j.issn1001-053x.2012.11.001
Jiang L W, Liu W L, Wu A H, et al. Synthesis of titanium dioxide nanopowders by a low-temperature combustion method. J Univ Sci Technol Beijing, 2012, 34(11): 1314 doi: 10.13374/j.issn1001-053x.2012.11.001
|
[18] |
李蕊, 夏仡, 許磊, 等. 微波水熱法快速合成氧化鋅納米棒及其光催化性能. 工程科學學報, 2020, 42(1):78
Li R, Xia Y, Xu L, et al. Study of rapidly synthesis of ZnO nanorods by microwave hydrothermal method and photocatalytic performance. Chin J Eng, 2020, 42(1): 78
|
[19] |
趙夢迪, 李永利, 王金淑. g-C3N4材料在光催化能源轉換領域的新進展. 工程科學學報, 2022, 44(4):641 doi: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204016
Zhao M D, Li Y L, Wang J S. Recent progress of graphitic phase carbon nitride photocatalytic materials on solar energy conversion. Chin J Eng, 2022, 44(4): 641 doi: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204016
|
[20] |
Zhang K, Ding H L, Pan W G, et al. Research progress of a composite metal oxide catalyst for VOC degradation. Environ Sci Technol, 2022, 56(13): 9220 doi: 10.1021/acs.est.2c02772
|
[21] |
Elkodous M A, El-Sayyad G S, Maksoud M I A A, et al. Nanocomposite matrix conjugated with carbon nanomaterials for photocatalytic wastewater treatment. J Hazard Mater, 2021, 410: 124657 doi: 10.1016/j.jhazmat.2020.124657
|
[22] |
Suzuki K, Mizuno N, Yamaguchi K. Polyoxometalate photocatalysis for liquid-phase selective organic functional group transformations. ACS Catal, 2018, 8(11): 10809 doi: 10.1021/acscatal.8b03498
|
[23] |
El Khawaja R, Sonar S, Barakat T, et al. VOCs catalytic removal over hierarchical porous zeolite NaY supporting Pt or Pd nanoparticles. Catal Today, https://doi.org/10.1016/j.cattod.2022.05.022
|
[24] |
Guo Q, Ma Z B, Zhou C Y, et al. Single molecule photocatalysis on TiO2 surfaces. Chem Rev, 2019, 119(20): 11020 doi: 10.1021/acs.chemrev.9b00226
|
[25] |
Guo Q, Zhou C Y, Ma Z B, et al. Fundamentals of TiO2 photocatalysis: Concepts, mechanisms, and challenges. Adv Mater, 2019, 31(50): 1901997 doi: 10.1002/adma.201901997
|
[26] |
Chen J F, Chen L, Wang X, et al. Er single atoms decorated TiO2 and Er3+ ions modified TiO2 for photocatalytic oxidation of mixed VOCs. Appl Surf Sci, 2022, 596: 153655 doi: 10.1016/j.apsusc.2022.153655
|
[27] |
Zhang J H, Hu Y, Qin J X, et al. TiO2?UiO?66?NH2 nanocomposites as efficient photocatalysts for the oxidation of VOCs. Chem Eng J, 2020, 385: 123814 doi: 10.1016/j.cej.2019.123814
|
[28] |
Liu Y X, Wang M, Li D, et al. Engineering self-doped surface defects of anatase TiO2 nanosheets for enhanced photocatalytic efficiency. Appl Surf Sci, 2021, 540: 148330 doi: 10.1016/j.apsusc.2020.148330
|
[29] |
Dong Y S, Fei X N, Zhou Y Z. Synthesis and photocatalytic activity of mesoporous – (001) facets TiO2 single crystals. Appl Surf Sci, 2017, 403: 662 doi: 10.1016/j.apsusc.2017.01.210
|
[30] |
Kotzias D, Binas V, Kiriakidis G. Smart surfaces: photocatalytic degradation of priority pollutants on TiO2-based coatings in indoor and outdoor environments-Principles and mechanisms. Materials, 2022, 15(2): 402 doi: 10.3390/ma15020402
|
[31] |
Shayegan Z, Lee C S, Haghighat F. TiO2 photocatalyst for removal of volatile organic compounds in gas phase – A review. Chem Eng J, 2018, 334: 2408 doi: 10.1016/j.cej.2017.09.153
|
[32] |
李東澤, 李石, 趙東風, 等. 用于VOCs降解的TiO2光催化劑的研究進展. 現代化工, 2017, 37(11):39
Li D Z, Li S, Zhao D F, et al. Research progress in TiO2 photocatalyst for VOCs degradation. Mod Chem Ind, 2017, 37(11): 39
|
[33] |
Cha B, Woo T, Han S, et al. Surface modification of TiO2 for obtaining high resistance against poisoning during photocatalytic decomposition of toluene. Catalysts, 2018, 8(11): 500 doi: 10.3390/catal8110500
|
[34] |
Shayegan Z, Haghighat F, Lee C S. Photocatalytic oxidation of volatile organic compounds for indoor environment applications: Three different scaled setups. Chem Eng J, 2019, 357: 533 doi: 10.1016/j.cej.2018.09.167
|
[35] |
Zhang L F, Moralejo C, Anderson W A. A review of the influence of humidity on photocatalytic decomposition of gaseous pollutants on TiO2‐based catalysts. Can J Chem Eng, 2019, 98(1): 263
|
[36] |
林路, 包燕平, 王敏, 等. 二氧化鈦改質對含磷轉爐渣中磷富集行為的影響. 北京科技大學學報, 2014, 36(8):1013 doi: 10.13374/j.issn1001-053x.2014.08.004
Lin L, Bao Y P, Wang M, et al. Influence of titania modification on phosphorus enrichment in P-bearing steelmaking slag. J Univ Sci Technol Beijing, 2014, 36(8): 1013 doi: 10.13374/j.issn1001-053x.2014.08.004
|
[37] |
Basavarajappa P S, Patil S B, Ganganagappa N, et al. Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis. Int J Hydrog Energy, 2020, 45(13): 7764 doi: 10.1016/j.ijhydene.2019.07.241
|
[38] |
Chang S M, Liu W S. The roles of surface-doped metal ions (V, Mn, Fe, Cu, Ce, and W) in the interfacial behavior of TiO2 photocatalysts. Appl Catal B:Environ, 2014, 156-157: 466 doi: 10.1016/j.apcatb.2014.03.044
|
[39] |
Saqlain S, Cha B J, Kim S Y, et al. Visible light-responsive Fe-loaded TiO2 photocatalysts for total oxidation of acetaldehyde: Fundamental studies towards large-scale production and applications. Appl Surf Sci, 2020, 505: 144160 doi: 10.1016/j.apsusc.2019.144160
|
[40] |
Chen M, Wang H H, Chen X Y, et al. High-performance of Cu-TiO2 for photocatalytic oxidation of formaldehyde under visible light and the mechanism study. Chem Eng J, 2020, 390: 124481 doi: 10.1016/j.cej.2020.124481
|
[41] |
Murcia J J, Hidalgo M C, Navío J A, et al. Ethanol partial photoxidation on Pt/TiO2 catalysts as green route for acetaldehyde synthesis. Catal Today, 2012, 196(1): 101 doi: 10.1016/j.cattod.2012.02.033
|
[42] |
Qu J F, Chen D Y, Li N J, et al. Ternary photocatalyst of atomic-scale Pt coupled with MoS2 co-loaded on TiO2 surface for highly efficient degradation of gaseous toluene. Appl Catal B:Environ, 2019, 256: 117877 doi: 10.1016/j.apcatb.2019.117877
|
[43] |
趙斯琴, 郭敏, 張梅, 等. Y3+和Eu3+離子共摻雜TiO2納米材料的制備及其光催化性能. 北京科技大學學報, 2010, 32(3):355
Zhao S Q, Guo M, Zhang M, et al. Synthesis and photocatalytic properties of TiO2 nanopowders codoped with Eu3+ and Y3+ ions. J Univ Sci Technol Beijing, 2010, 32(3): 355
|
[44] |
Khalilzadeh A, Fatemi S. Spouted bed reactor for VOC removal by modified nano-TiO2 photocatalytic particles. Chem Eng Res Des, 2016, 115: 241 doi: 10.1016/j.cherd.2016.10.004
|
[45] |
Tian L J, Xing L, Shen X, et al. Visible light enhanced Fe–I–TiO2 photocatalysts for the degradation of gaseous benzene. Atmos Pollut Res, 2020, 11(1): 179 doi: 10.1016/j.apr.2019.10.005
|
[46] |
Xue X L, Gong X W, Chen X Y, et al. A facile synthesis of Ag/Ag2O@TiO2 for toluene degradation under UV–visible light: Effect of Ag formation by partial reduction of Ag2O on photocatalyst stability. J Phys Chem Solids, 2021, 150: 109799 doi: 10.1016/j.jpcs.2020.109799
|
[47] |
Guo D W, Feng D D, Zhang Y L, et al. Synergistic mechanism of biochar-nano TiO2 adsorption-photocatalytic oxidation of toluene. Fuel Process Technol, 2022, 229: 107200 doi: 10.1016/j.fuproc.2022.107200
|
[48] |
Fernández-Catalá J, Berenguer-Murcia á, Cazorla-Amorós D. Study of MWCNT dispersion effect in TiO2-MWCNT composites for gas-phase propene photooxidation. Mater Res Bull, 2021, 134: 111089 doi: 10.1016/j.materresbull.2020.111089
|
[49] |
Tobaldi D M, Dvoranová D, Lajaunie L, et al. Graphene-TiO2 hybrids for photocatalytic aided removal of VOCs and nitrogen oxides from outdoor environment. Chem Eng J, 2021, 405: 126651 doi: 10.1016/j.cej.2020.126651
|
[50] |
中華人民共和國環境保護部. GBHJ38—2017氣相色譜法. 北京: 環境保護部, 2018
Ministry of Environmental Protection, People’s Republic of China. GBHJ38—2017 Gas Chromatographic Method. Beijing: Ministry of Environmental Protection, 2018
|
[51] |
江蘇省環境保護廳. DB323151—2016化學工業揮發性有機化合物排放標準. 江蘇: 環境保護廳, 2016
Environmental Protection Department of Jiangsu Province. DB323151—2016 Emission Standard of Volatile Organic Compounds for Chemical Industry. Jiangsu: Environmental Protection Department, 2016
|
[52] |
Wang C Y, Rao Z P, Mahmood A, et al. Improved photocatalytic oxidation performance of gaseous acetaldehyde by ternary g-C3N4/Ag-TiO2 composites under visible light. J Colloid Interface Sci, 2021, 602: 699 doi: 10.1016/j.jcis.2021.05.186
|
[53] |
Zhao C F, Yang Y H, Luo L, et al. γ-ray induced formation of oxygen vacancies and Ti3+ defects in anatase TiO2 for efficient photocatalytic organic pollutant degradation. Sci Total Environ, 2020, 747: 141533 doi: 10.1016/j.scitotenv.2020.141533
|
[54] |
Xie H, Li N, Chen X Z, et al. Surface oxygen vacancies promoted photodegradation of benzene on TiO2 film. Appl Surf Sci, 2020, 511: 145597 doi: 10.1016/j.apsusc.2020.145597
|
[55] |
Weon S, Choi E, Kim H, et al. Active{001}facet exposed TiO2 nanotubes photocatalyst filter for volatile organic compounds removal: From material development to commercial indoor air cleaner application. Environ Sci Technol, 2018, 52(16): 9330 doi: 10.1021/acs.est.8b02282
|
[56] |
Valero-Romero M J, Santaclara J G, Oar-Arteta L, et al. Photocatalytic properties of TiO2 and Fe-doped TiO2 prepared by metal organic framework-mediated synthesis. Chem Eng J, 2019, 360: 75 doi: 10.1016/j.cej.2018.11.132
|
[57] |
Hu X L, Song J Y, Zheng S L, et al. Insight into the defective sites of TiO2/sepiolite composite on formaldehyde removal and H2 evolution. Mater Today Energy, 2022, 24: 100932 doi: 10.1016/j.mtener.2021.100932
|
[58] |
Man Z, Meng Y, Lin X C, et al. Assembling UiO-66@TiO2 nanocomposites for efficient photocatalytic degradation of dimethyl sulfide. Chem Eng J, 2022, 431: 133952 doi: 10.1016/j.cej.2021.133952
|
[59] |
Weon S, Choi W. TiO2 nanotubes with open channels as deactivation-resistant photocatalyst for the degradation of volatile organic compounds. Environ Sci Technol, 2016, 50(5): 2556 doi: 10.1021/acs.est.5b05418
|