Citation: | WANG Qiao, YE Min, WEI Meng, LIAN Gao-qi, WU Chen-guang. ELM- and MCSCKF-based state of charge estimation for lithium-ion batteries[J]. Chinese Journal of Engineering, 2023, 45(6): 995-1002. doi: 10.13374/j.issn2095-9389.2022.05.10.003 |
[1] |
郜浩楠, 徐俊, 蒲曉暉, 等. 面向新能源汽車的懸架振動能量回收在線控制方法. 西安交通大學學報, 2020, 54(4):19 doi: 10.7652/xjtuxb202004003
Gao H N, Xu J, Pu X H, et al. An online control method for energy recovery of suspension vibration of new energy vehicles. J Xi’an Jiaotong Univ, 2020, 54(4): 19 doi: 10.7652/xjtuxb202004003
|
[2] |
Shrivastava P, Soon T K, Idris M Y I B, et al. Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries. Renew Sustain Energy Rev, 2019, 113: 109233 doi: 10.1016/j.rser.2019.06.040
|
[3] |
Wang Y J, Tian J Q, Sun Z D, et al. A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems. Renew Sustain Energy Rev, 2020, 131: 110015 doi: 10.1016/j.rser.2020.110015
|
[4] |
Xiong R, Cao J Y, Yu Q Q, et al. Critical review on the battery state of charge estimation methods for electric vehicles. IEEE Access, 2017, 6: 1832
|
[5] |
Zhang S Z, Guo X, Dou X X, et al. A data-driven coulomb counting method for state of charge calibration and estimation of lithium-ion battery. Sustain Energy Technol Assess, 2020, 40: 100752
|
[6] |
Xiong R, Yu Q Q, Wang L Y, et al. A novel method to obtain the open circuit voltage for the state of charge of lithium ion batteries in electric vehicles by using H infinity filter. Appl Energy, 2017, 207: 346 doi: 10.1016/j.apenergy.2017.05.136
|
[7] |
王曉蘭, 靳皓晴, 劉祥遠. 基于融合模型的鋰離子電池荷電狀態在線估計. 工程科學學報, 2020, 42(9):1200
Wang X L, Jin H Q, Liu X Y. Online estimation of the state of charge of a lithium-ion battery based on the fusion model. Chin J Eng, 2020, 42(9): 1200
|
[8] |
Zhang Q, Cui N X, Li Y, et al. Fractional calculus based modeling of open circuit voltage of lithium-ion batteries for electric vehicles. J Energy Storage, 2020, 27: 100945 doi: 10.1016/j.est.2019.100945
|
[9] |
Feng F, Teng S L, Liu K L, et al. Co-estimation of lithium-ion battery state of charge and state of temperature based on a hybrid electrochemical-thermal-neural-network model. J Power Sources, 2020, 455: 227935 doi: 10.1016/j.jpowsour.2020.227935
|
[10] |
Zhu R, Duan B, Zhang J M, et al. Co-estimation of model parameters and state-of-charge for lithium-ion batteries with recursive restricted total least squares and unscented Kalman filter. Appl Energy, 2020, 277: 115494 doi: 10.1016/j.apenergy.2020.115494
|
[11] |
Liu X, Qu H, Zhao J H, et al. Maximum correntropy square-root cubature Kalman filter with application to SINS/GPS integrated systems. ISA Trans, 2018, 80: 195 doi: 10.1016/j.isatra.2018.05.001
|
[12] |
Almeida G C S, Souza A C Z, Ribeiro P F. A neural network application for a lithium-ion battery pack state-of-charge estimator with enhanced accuracy. Proceedings, 2020, 58(1): 33
|
[13] |
Wang J, Yang Y Q, Wang T, et al. Big data service architecture: a survey. J Internet Technol, 2020, 21(2): 393
|
[14] |
Reddy G T, Reddy M P K, Lakshmanna K, et al. Analysis of dimensionality reduction techniques on big data. IEEE Access, 2020, 8: 54776 doi: 10.1109/ACCESS.2020.2980942
|
[15] |
Gozde O S, Milutin P, Zafer S, et al. Battery state-of-charge estimation based on regular/recurrent Gaussian process regression. IEEE Trans. Ind. Electron., 2018, 65(5): 4311 doi: 10.1109/TIE.2017.2764869
|
[16] |
Li X Y, Yuan C G, Li X H, et al. State of health estimation for Li-Ion battery using incremental capacity analysis and Gaussian process regression. Energy, 2020, 190: 116467 doi: 10.1016/j.energy.2019.116467
|
[17] |
Ren X Q, Liu S L, Yu X D, et al. A method for state-of-charge estimation of lithium-ion batteries based on PSO-LSTM. Energy, 2021, 234: 121236 doi: 10.1016/j.energy.2021.121236
|
[18] |
Jiao M, Wang D Q, Qiu J L. A GRU-RNN based momentum optimized algorithm for SOC estimation. J Power Sources, 2020, 459: 228051 doi: 10.1016/j.jpowsour.2020.228051
|
[19] |
Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: Theory and applications. Neurocomputing, 2006, 70(1-3): 489 doi: 10.1016/j.neucom.2005.12.126
|
[20] |
Jiao M, Wang D Q, Yang Y, et al. More intelligent and robust estimation of battery state-of-charge with an improved regularized extreme learning machine. Eng Appl Artif Intell, 2021, 104: 104407 doi: 10.1016/j.engappai.2021.104407
|
[21] |
Hossain Lipu M S, Hannan M A, Hussain A, et al. Extreme learning machine model for state-of-charge estimation of lithium-ion battery using gravitational search algorithm. IEEE Trans Ind Appl, 2019, 55(4): 4225 doi: 10.1109/TIA.2019.2902532
|
[22] |
Mirjalili S, Mirjalili S M, Lewis A. Grey wolf optimizer. Adv Eng Softw, 2014, 69: 46 doi: 10.1016/j.advengsoft.2013.12.007
|
[23] |
Deng Z W, Hu X S, Lin X K, et al. Data-driven state of charge estimation for lithium-ion battery packs based on Gaussian process regression. Energy, 2020, 205: 118000 doi: 10.1016/j.energy.2020.118000
|
[24] |
Wei Z B, Hu J, Li Y, et al. Hierarchical soft measurement of load current and state of charge for future smart lithium-ion batteries. Appl Energy, 2022, 307: 118246 doi: 10.1016/j.apenergy.2021.118246
|
[25] |
Wei Z B, Zhao D F, He H W, et al. A noise-tolerant model parameterization method for lithium-ion battery management system. Appl Energy, 2020, 268: 114932 doi: 10.1016/j.apenergy.2020.114932
|
[26] |
Wei Z B, Dong G Z, Zhang X N, et al. Noise-immune model identification and state-of-charge estimation for lithium-ion battery using bilinear parameterization. IEEE Trans Ind Electron, 2021, 68(1): 312 doi: 10.1109/TIE.2019.2962429
|