Citation: | ZHANG Ji-xiong, WANG Ji-yang, ZHOU Nan, KONG Yan-long, ZHU Cun-li, LIU Heng-feng. Collaborative mining system of geothermal energy and coal resources in deep mines[J]. Chinese Journal of Engineering, 2022, 44(10): 1682-1693. doi: 10.13374/j.issn2095-9389.2022.05.07.005 |
[1] |
謝和平, 高峰, 鞠楊, 等. 深地煤炭資源流態化開采理論與技術構想. 煤炭學報, 2017, 42(3):547 doi: 10.13225/j.cnki.jccs.2017.0299
Xie H P, Gao F, Ju Y, et al. Theoretical and technological conception of the fluidization mining for deep coal resources. J China Coal Soc, 2017, 42(3): 547 doi: 10.13225/j.cnki.jccs.2017.0299
|
[2] |
李啟月, 劉愷, 李夕兵. 基于協同回采的深部厚大礦體分段充填采礦法. 工程科學學報, 2016, 38(11):1515
Li Q Y, Liu K, Li X B. Sublevel filling method for a heavy orebody in deep mining based on collaborative stoping. Chin J Eng, 2016, 38(11): 1515
|
[3] |
蔡美峰, 吳允權, 李鵬, 等. 寧夏地區煤炭資源綠色開發現狀與思路. 工程科學學報, 2022, 44(1):1
Cai M F, Wu Y Q, Li P, et al. Present situation and ideas of green development of coal resources in Ningxia. Chin J Eng, 2022, 44(1): 1
|
[4] |
何滿潮, 郭平業. 深部巖體熱力學效應及溫控對策. 巖石力學與工程學報, 2013, 32(12):2377
He M C, Guo P Y. Deep rock mass thermodynamic effect and temperature control measures. Chin J Rock Mech Eng, 2013, 32(12): 2377
|
[5] |
龐忠和, 胡圣標, 汪集旸. 中國地熱能發展路線圖. 科技導報, 2012, 30(32):18 doi: 10.3981/j.issn.1000-7857.2012.32.001
Pang Z H, Hu S B, Wang J Y. A roadmap to geothermal energy development in China. Sci Technol Rev, 2012, 30(32): 18 doi: 10.3981/j.issn.1000-7857.2012.32.001
|
[6] |
關鋅. 地熱資源經濟評價方法與應用研究[學位論文]. 武漢: 中國地質大學, 2014
Guan X. Study on Method and Application of Economic Evaluation of Geothermal Resources [Dissertation]. Wuhan: China University of Geosciences, 2014
|
[7] |
汪集旸, 胡圣標, 龐忠和, 等. 中國大陸干熱巖地熱資源潛力評價. 地熱能, 2019(3):3
Wang J Y, Hu S B, Pang Z H, et al. Evaluation of geothermal resources potential of hot dry rocks in China’s Mainland. Geotherm Energy, 2019(3): 3
|
[8] |
汪集暘, 龐忠和, 孔彥龍, 等. 我國地熱清潔取暖產業現狀與展望. 科技促進發展, 2020, 16(增刊1): 294
Wang J Y, Pang Z H, Kong Y L, et al. Status and prospects of geothermal clean heating industry in China. Sci Technol Dev, 2020, 16(Suppl 1): 294
|
[9] |
李慶文, 鄭明陽, 喬蘭, 等. 能源樁三維螺旋線熱源的瞬態傳熱模型. 工程科學學報, 2021, 43(11):1569
Li Q W, Zheng M Y, Qiao L, et al. Transient heat transfer model of a three-dimensional spiral heat source in an energy pile. Chin J Eng, 2021, 43(11): 1569
|
[10] |
向艷蕾, 楊允, 閆文瑞, 等. 煤礦回風余熱資源利用技術現狀與展望. 煤質技術, 2021, 36(6):77
Xiang Y L, Yang Y, Yan W R, et al. Current status and prospect of waste heat utilization technologies of return air in coal mines. Coal Qual Technol, 2021, 36(6): 77
|
[11] |
魏忠勛, 王彥洪, 趙川. 礦井余熱綜合利用技術研究與應用. 煤炭科學技術, 2013, 41(增刊2): 376
Wei Z X, Wang Y H, Zhao C. Application on comprehensive utilization technology of mine waste heat. Coal Sci Technol, 2013, 41(Suppl 2): 376
|
[12] |
吳星輝, 李鵬, 郭奇峰, 等. 熱損傷巖石物理力學特性演化機制研究進展. 工程科學學報, 2022, 44(5):827
Wu X H, Li P, Guo Q F, et al. Research progress on the evolution of physical and mechanical properties of thermally damaged rock. Chin J Eng, 2022, 44(5): 827
|
[13] |
李偉. 深部煤炭資源智能化開采技術現狀與發展方向. 煤炭科學技術, 2021, 49(1):139 doi: 10.13199/j.cnki.cst.2021.01.008
Li W. Current status and development direction of intelligent mining technology for deep coal resources. Coal Sci Technol, 2021, 49(1): 139 doi: 10.13199/j.cnki.cst.2021.01.008
|
[14] |
呂有廠, 何志強, 王英偉, 等. 超千米深部礦井采動應力顯現規律. 煤炭學報, 2019, 44(5):1326 doi: 10.13225/j.cnki.jccs.2019.6030
Lü Y C, He Z Q, Wang Y W, et al. Mining-induced mechanics behavior in the deep mine with an over-kilometer depth. J China Coal Soc, 2019, 44(5): 1326 doi: 10.13225/j.cnki.jccs.2019.6030
|
[15] |
劉俊俊. 溫濕循環作用下隔熱噴射混凝土蠕變試驗研究[學位論文]. 淮南: 安徽理工大學, 2020
Liu J J. Creep Test Study of Thermal Insulated Shotcrete Under Temperature and Humidity Cycling [Dissertation]. Huainan: Anhui University of Science & Technology, 2020
|
[16] |
謝和平, 高峰, 鞠楊, 等. 深部開采的定量界定與分析. 煤炭學報, 2015, 40(1):1 doi: 10.13225/j.cnki.jccs.2014.1690
Xie H P, Gao F, Ju Y, et al. Quantitative definition and investigation of deep mining. J China Coal Soc, 2015, 40(1): 1 doi: 10.13225/j.cnki.jccs.2014.1690
|
[17] |
張吉雄, 張強, 巨峰, 等. 深部煤炭資源采選充綠色化開采理論與技術. 煤炭學報, 2018, 43(2):377 doi: 10.13225/j.cnki.jccs.2017.4102
Zhang J X, Zhang Q, Ju F, et al. Theory and technique of greening mining integrating mining, separating and backfilling in deep coal resources. J China Coal Soc, 2018, 43(2): 377 doi: 10.13225/j.cnki.jccs.2017.4102
|
[18] |
張吉雄, 屠世浩, 曹亦俊, 等. 煤礦井下煤矸智能分選與充填技術及工程應用. 中國礦業大學學報, 2021, 50(3):417 doi: 10.13247/j.cnki.jcumt.001275
Zhang J X, Tu S H, Cao Y J, et al. Coal gangue intelligent separation and backfilling technology and its engineering application in underground coal mine. J China Univ Min Technol, 2021, 50(3): 417 doi: 10.13247/j.cnki.jcumt.001275
|
[19] |
劉玉鼎, 霍丙杰, 辛龍泉. 深部開采環境及巖體力學行為研究. 礦業工程, 2009, 7(3):14 doi: 10.3969/j.issn.1671-8550.2009.03.006
Liu Y D, Huo B J, Xin L Q. Study on mining environment and mechanical behaviors of strata in deep mining. Min Eng, 2009, 7(3): 14 doi: 10.3969/j.issn.1671-8550.2009.03.006
|
[20] |
吳基文, 王廣濤, 翟曉榮, 等. 淮南礦區地熱地質特征與地熱資源評價. 煤炭學報, 2019, 44(8):2566 doi: 10.13225/j.cnki.jccs.KJ19.0574
Wu J W, Wang G T, Zhai X R, et al. Geothermal geological characteristics and geothermal resources evaluation of Huainan mining area. J China Coal Soc, 2019, 44(8): 2566 doi: 10.13225/j.cnki.jccs.KJ19.0574
|
[21] |
金帥宇. 能源動力工程及能源可持續發展的研究. 中國高新區, 2017(23):37
Jin S Y. Research on power engineering and sustainable development of energy. Sci Technol Ind Parks, 2017(23): 37
|
[22] |
高雪峰, 張延軍, 黃奕斌, 等. 花崗巖粗糙單裂隙對流換熱特性的數值模擬. 巖土力學, 2020, 41(5):1761 doi: 10.16285/j.rsm.2019.0972
Gao X F, Zhang Y J, Huang Y B, et al. Numerical simulation of convective heat transfer characteristics of a rough single fracture in granite. Rock Soil Mech, 2020, 41(5): 1761 doi: 10.16285/j.rsm.2019.0972
|
[23] |
薛放心. 礦井回風傳熱傳質及熱能效實驗研究[學位論文]. 徐州: 中國礦業大學, 2014
Xue F X. Study on Mine Return Air Heat-mass Transfer and Thermal Efficiency of the Experiment [Dissertation]. Xuzhou: China University of Mining and Technology, 2014
|
[24] |
劉廷澤. 淺談低品位熱能的利用途徑. 低碳世界, 2018(11):322 doi: 10.3969/j.issn.2095-2066.2018.11.206
Liu T Z. Discussion on utilization ways of low-grade heat energy. Low Carbon World, 2018(11): 322 doi: 10.3969/j.issn.2095-2066.2018.11.206
|
[25] |
王鵬, Chen S E, 陳占清, 等. 二氧化碳在多孔水泥充填材料中的擴散與反應動力學響應. 采礦與安全工程學報, 2019, 36(2):381 doi: 10.13545/j.cnki.jmse.2019.02.022
Wang P, Chen S E, Chen Z Q, et al. Dynamic response of carbon dioxide diffusion and reaction in porous cementitious back-filling material. J Min Saf Eng, 2019, 36(2): 381 doi: 10.13545/j.cnki.jmse.2019.02.022
|
[26] |
李鐵增. 熱應力對深部巷道圍巖穩定性的影響[學位論文]. 青島: 山東科技大學, 2008
Li T Z. Influence of Thermal Stress on Stability of Surrounding Rock of Deep Roadway [Dissertation]. Qingdao: Shandong University of Science and Technology, 2008
|
[27] |
張發旺, 王貴玲, 侯新偉, 等. 地下水循環對圍巖溫度場的影響及地熱資源形成分析—以平頂山礦區為例. 地球學報, 2000, 21(2):142 doi: 10.3321/j.issn:1006-3021.2000.02.006
Zhang F W, Wang G L, Hou X W, et al. An analysis of the formation of geothermal resources and the effects of groundwater circulation on the wall rock temperature field—Taking the Pingdingshan mining field as an example. Acta Geosicientia Sin, 2000, 21(2): 142 doi: 10.3321/j.issn:1006-3021.2000.02.006
|
[28] |
李鐵增, 王麗, 李玉梅. 深部巷道圍巖瞬態溫度-熱應力的耦合作用. 黑龍江科技大學學報, 2015, 25(2):132 doi: 10.3969/j.issn.2095-7262.2015.02.004
Li T Z, Wang L, Li Y M. Study on coupled transient temperature-thermal stress in deep roadways. J Heilongjiang Univ Sci Technol, 2015, 25(2): 132 doi: 10.3969/j.issn.2095-7262.2015.02.004
|
[29] |
曹興起, 趙暉, 楊衛衛, 等. 綜合利用低品位余熱與LNG冷能的復合循環系統. 熱力發電, 2014, 43(12):49 doi: 10.3969/j.issn.1002-3364.2014.12.049
Cao X Q, Zhao H, Yang W W, et al. A combined energy recovery system for comprehensive utilization of both low-grade waste heat and cold energy in LNG. Therm Power Gener, 2014, 43(12): 49 doi: 10.3969/j.issn.1002-3364.2014.12.049
|
[30] |
黃方益. 煤礦余熱資源的利用分析研究. 中國新技術新產品, 2019(15):56 doi: 10.3969/j.issn.1673-9957.2019.15.035
Huang F Y. Analysis and research on utilization of waste heat resources in coal mines. New Technol New Prod China, 2019(15): 56 doi: 10.3969/j.issn.1673-9957.2019.15.035
|
[31] |
李海燕, 劉靜. 低品位余熱利用技術的研究現狀、困境和新策略. 科技導報, 2010, 28(17):112
Li H Y, Liu J. Current research status, difficulties and new strategy in utilization of low grade heat. Sci Technol Rev, 2010, 28(17): 112
|