Citation: | ZHANG Han, QIAN Quan, WU Xing. Active regression learning method for material data[J]. Chinese Journal of Engineering, 2023, 45(7): 1232-1237. doi: 10.13374/j.issn2095-9389.2022.05.03.004 |
[1] |
Cao X Y, Yao J, Xu Z B, et al. Hyperspectral image classification with convolutional neural network and active learning. IEEE Trans Geosci Remote Sens, 2020, 58(7): 4604 doi: 10.1109/TGRS.2020.2964627
|
[2] |
Tsymbalov E, Panov M, Shapeev A. Dropout-based active learning for regression // International Conference on Analysis of Images, Social Networks and Texts. Moscow, 2018: 247
|
[3] |
Kumar P, Gupta A. Active learning query strategies for classification, regression, and clustering: A survey. J Comput Sci Technol, 2020, 35(4): 913 doi: 10.1007/s11390-020-9487-4
|
[4] |
Guo J N, Shi H C, Kang Y Y, et al. Semi-supervised active learning for semi-supervised models: Exploit adversarial examples with graph-based virtual labels // Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal, 2021: 2896
|
[5] |
Sener O, Savarese S. Active learning for convolutional neural networks: A core-set approach // International Conference on Learning Representations. Vancouver, 2018: 38
|
[6] |
Sinha S, Ebrahimi S, Darrell T. Variational adversarial active learning // Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul, 2019: 5971
|
[7] |
Bengar J Z, van de Weijer J, Twardowski B, et al. Reducing label effort: Self-supervised meets active learning // Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal, 2021: 1631
|
[8] |
Choi J, Yi K M, Kim J, et al. Vab-al: Incorporating class imbalance and difficulty with variational bayes for active learning // Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, 2021: 6745
|
[9] |
Barz B, K?ding C, Denzler J. Information-theoretic active learning for content-based image retrieval // German Conference on Pattern Recognition. Stuttgart, 2018: 650
|
[10] |
Deng Y, Chen K W, Shen Y L, et al. Adversarial active learning for sequences labeling and generation // Proceedings of the 27th International Joint Conference on Artificial Intelligence. Stockholm, 2018: 4012
|
[11] |
Bengar J Z, Gonzalez-Garcia A, Villalonga G, et al. Temporal coherence for active learning in videos // Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops. Seoul, 2019: 914
|
[12] |
Kusne A G, Yu H S, Wu C M, et al. On-the-fly closed-loop materials discovery via Bayesian active learning. Nat Commun, 2020, 11: 5966 doi: 10.1038/s41467-020-19597-w
|
[13] |
Min K, Cho E. Accelerated discovery of novel inorganic materials with desired properties using active learning. J Phys Chem C, 2020, 124(27): 14759 doi: 10.1021/acs.jpcc.0c00545
|
[14] |
Lookman T, Balachandran P V, Xue D Z, et al. Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted design. Npj Comput Mater, 2019, 5: 21 doi: 10.1038/s41524-019-0153-8
|
[15] |
Bassman L, Rajak P, Kalia R K, et al. Active learning for accelerated design of layered materials. Npj Comput Mater, 2018, 4: 74 doi: 10.1038/s41524-018-0129-0
|
[16] |
Juneja R, Yumnam G, Satsangi S, et al. Coupling the high-throughput property map to machine learning for predicting lattice thermal conductivity. Chem Mater, 2019, 31(14): 5145 doi: 10.1021/acs.chemmater.9b01046
|
[17] |
Loftis C, Yuan K P, Zhao Y, et al. Lattice thermal conductivity prediction using symbolic regression and machine learning. J Phys Chem A, 2021, 125(1): 435 doi: 10.1021/acs.jpca.0c08103
|
[18] |
Le T T. Prediction of tensile strength of polymer carbon nanotube composites using practical machine learning method. J Compos Mater, 2020, 55(6): 787
|
[19] |
?olak A B, Y?ld?z O, Bayrak M, et al. Experimental study for predicting the specific heat of water based Cu–Al2O3 hybrid nanofluid using artificial neural network and proposing new correlation. Int J Energy Res, 2020, 44(9): 7198 doi: 10.1002/er.5417
|
[20] |
Assad M E H, Mahariq I, Ghandour R, et al. Utilization of machine learning methods in modeling specific heat capacity of nanofluids. Comput Mater Continua, 2022(1): 361
|
[21] |
Wu D R, Lin C T, Huang J. Active learning for regression using greedy sampling. Inf Sci, 2019, 474: 90 doi: 10.1016/j.ins.2018.09.060
|
[22] |
Liang E J, Sun Q, Yuan H L, et al. Negative thermal expansion: Mechanisms and materials. Front Phys, 2021, 16(5): 53302 doi: 10.1007/s11467-021-1070-0
|
[23] |
Mehr A D, Nourani V, Khosrowshahi V K, et al. A hybrid support vector regression–firefly model for monthly rainfall forecasting. Int J Environ Sci Technol, 2019, 16(1): 335 doi: 10.1007/s13762-018-1674-2
|
[24] |
Wu D R. Pool-based sequential active learning for regression. IEEE Trans Neural Netw Learn Syst, 2019, 30(5): 1348 doi: 10.1109/TNNLS.2018.2868649
|
[25] |
Onyutha C. A hydrological model skill score and revised R-squared. Hydrol Res, 2022, 53(1): 51 doi: 10.2166/nh.2021.071
|