Citation: | ZHOU Lin-lin, YANG Tao, WANG En-hui, ZHOU Guo-Zhi, HOU Xin-mei. Integrated photoanode based on silicon carbide nanowire arrays for efficient water splitting[J]. Chinese Journal of Engineering, 2023, 45(7): 1149-1155. doi: 10.13374/j.issn2095-9389.2022.04.29.003 |
[1] |
Abe J O, Popoola A P I, Ajenifuja E, et al. Hydrogen energy, economy and storage: Review and recommendation. Int J Hydrog Energy, 2019, 44(29): 15072 doi: 10.1016/j.ijhydene.2019.04.068
|
[2] |
Li X L, Wang Z L, Wang L Z. Metal-organic framework‐based materials for solar water splitting. Small Sci, 2021, 1(5): 2000074 doi: 10.1002/smsc.202000074
|
[3] |
Schneider S, Bajohr S, Graf F, et al. Verfahrensübersicht zur erzeugung von wasserstoff durch erdgas‐pyrolyse. Chemie Ingenieur Tech, 2020, 92(8): 1023 doi: 10.1002/cite.202000021
|
[4] |
Midilli A, Kucuk H, Topal M E, et al. A comprehensive review on hydrogen production from coal gasification: Challenges and Opportunities. Int J Hydrog Energy, 2021, 46(50): 25385 doi: 10.1016/j.ijhydene.2021.05.088
|
[5] |
Tiwari A, Pandey A. Cyanobacterial hydrogen production – A step towards clean environment. Int J Hydrog Energy, 2012, 37(1): 139 doi: 10.1016/j.ijhydene.2011.09.100
|
[6] |
Chang Y H, Lin C T, Chen T Y, et al. Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams. Adv Mater, 2013, 25: 756 doi: 10.1002/adma.201202920
|
[7] |
Shi Y, Yang A F, Cao C S, et al. Applications of MOFs: Recent advances in photocatalytic hydrogen production from water. Coord Chem Rev, 2019, 390(5): 50
|
[8] |
Cho S, Jang J W, Lee K H, et al. Research Update: Strategies for efficient photoelectrochemical water splitting using metal oxide photoanodes. APL Mater, 2014, 2(1): 010703 doi: 10.1063/1.4861798
|
[9] |
Sun D T, Fan W Q, Wang F F, et al. Promoting photoelectrochemical hydrogen production performance by fabrication of Co1?XS decorating BiVO4 photoanode. Int J Hydrog Energy, 2022, 47(2): 940 doi: 10.1016/j.ijhydene.2021.10.075
|
[10] |
Li B Y, Jian J X, Chen J B, et al. Nanoporous 6H-SiC photoanodes with a conformal coating of Ni-FeOOH nanorods for zero-onset-potential water splitting. ACS Appl Mater Interfaces, 2020, 12(6): 7038 doi: 10.1021/acsami.9b17170
|
[11] |
Xu S, Jiang F L, Gao F M, et al. Single-crystal integrated photoanodes based on 4H-SiC nanohole arrays for boosting photoelectrochemical water splitting activity. ACS Appl Mater Interfaces, 2020, 12(18): 20469 doi: 10.1021/acsami.0c02893
|
[12] |
Jian J X, Sun J W. A review of recent progress on silicon carbide for photoelectrochemical water splitting. Sol RRL, 2020, 4(7): 2000111 doi: 10.1002/solr.202000111
|
[13] |
Lee M G, Park J S, Jang H W. Solution-processed metal oxide thin film nanostructures for water splitting photoelectrodes: A review. J Korean Ceram Soc, 2018, 55(3): 185 doi: 10.4191/kcers.2018.55.3.08
|
[14] |
Zhang H, Zong R L, Zhu Y F. Photocorrosion inhibition and photoactivity enhancement for zinc oxide via hybridization with monolayer polyaniline. J Phys Chem C, 2009, 113(11): 4605 doi: 10.1021/jp810748u
|
[15] |
Zhao L F, Chen S L, Wang L, et al. Large-scale fabrication of free-standing and transparent SiC nanohole array with tailored structures. Ceram Int, 2018, 44(6): 7280 doi: 10.1016/j.ceramint.2017.12.196
|
[16] |
Yang T, Chen S L, Li X X, et al. High-performance SiC nanobelt photodetectors with long-term stability against 300 °C up to 180 days. Adv Funct Mater, 2019, 29(11): 1806250 doi: 10.1002/adfm.201806250
|
[17] |
Li W J, Liu Q, Chen S L, et al. Single-crystalline integrated 4H-SiC nanochannel array electrode: Toward high-performance capacitive energy storage for robust wide-temperature operation. Mater Horiz, 2018, 5(5): 883 doi: 10.1039/C8MH00474A
|
[18] |
Li W J, Liu Q, Fang Z, et al. All‐solid‐state on‐chip supercapacitors based on free‐standing 4H‐SiC nanowire arrays. Adv Energy Mater, 2019, 9(17): 1900073 doi: 10.1002/aenm.201900073
|
[19] |
Hou J G, Sun Y Q, Wu Y Z, et al. Promoting active sites in core-shell nanowire array as Mott-Schottky electrocatalysts for efficient and stable overall water splitting. Adv Funct Mater, 2018, 28(4): 1704447 doi: 10.1002/adfm.201704447
|
[20] |
Wang K H, Li L C, Shellaiah M, et al. Structural and photophysical properties of methylammonium lead tribromide (MAPbBr3) single crystals. Sci Rep, 2017, 7: 13643 doi: 10.1038/s41598-017-13571-1
|
[21] |
Zhou L L, Zhu L P, Yang T, et al. Ultra-stable and durable piezoelectric nanogenerator with all-weather service capability based on N doped 4H-SiC nanohole arrays. Nanomicro Lett, 2021, 14(1): 30
|
[22] |
Zhou L L, Yang T, Zhu L P, et al. Piezoelectric nanogenerators with high performance against harsh conditions based on tunable N doped 4H-SiC nanowire arrays. Nano Energy, 2021, 83: 105826 doi: 10.1016/j.nanoen.2021.105826
|
[23] |
Chen C M, Chen S L, Shang M H, et al. Fabrication of highly oriented 4H-SiC gourd-shaped nanowire arrays and their field emission properties. J Mater Chem C, 2016, 4(23): 5195 doi: 10.1039/C6TC00450D
|
[24] |
Jian J X, Shi Y C, Ekeroth S, et al. A nanostructured NiO/cubic SiC p-n heterojunction photoanode for enhanced solar water splitting. J Mater Chem A, 2019, 7(9): 4721 doi: 10.1039/C9TA00020H
|
[25] |
Ren X, Sangle A, Zhang S Y, et al. Photoelectrochemical water splitting strongly enhanced in fast-grown ZnO nanotree and nanocluster structures. J Mater Chem A, 2016, 4(26): 10203 doi: 10.1039/C6TA02788A
|
[26] |
Jiang C R, Moniz S J A, Wang A Q, et al. Photoelectrochemical devices for solar water splitting - materials and challenges. Chem Soc Rev, 2017, 46(15): 4645 doi: 10.1039/C6CS00306K
|