<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 10
Sep.  2022
Turn off MathJax
Article Contents
CHEN Xiang-sheng, WU Xian-long, BAO Xiao-hua, CUI Hong-zhi, SONG Chao-yang, LIU Zhi-qiang. Thoughts on roadway and chamber construction technology in deep rock for mineral–geothermal co-mining[J]. Chinese Journal of Engineering, 2022, 44(10): 1660-1668. doi: 10.13374/j.issn2095-9389.2022.04.12.006
Citation: CHEN Xiang-sheng, WU Xian-long, BAO Xiao-hua, CUI Hong-zhi, SONG Chao-yang, LIU Zhi-qiang. Thoughts on roadway and chamber construction technology in deep rock for mineral–geothermal co-mining[J]. Chinese Journal of Engineering, 2022, 44(10): 1660-1668. doi: 10.13374/j.issn2095-9389.2022.04.12.006

Thoughts on roadway and chamber construction technology in deep rock for mineral–geothermal co-mining

doi: 10.13374/j.issn2095-9389.2022.04.12.006
More Information
  • Corresponding author: E-mail: h.z.cui@szu.edu.cn
  • Received Date: 2022-04-12
    Available Online: 2022-06-07
  • Publish Date: 2022-10-25
  • With the depletion of shallow mineral resources, China’s mineral mining is gradually developing into deep rock mining, which will become an important source of mineral resources in China. The mineral geothermal co-mining technology can reduce the heat disaster and utilize the geothermal resources simultaneously, thus being a deep mining technology with wide applications in the future. The co-mining of deep mineral and geothermal energies is an important means to ensure the sustainable utilization of deep resources. However, the construction of deep roadways and chambers faces many new challenges and technical issues. High temperature and stress are the two major characteristics of deep rock, causing completely different mechanical characteristics of deep strata to those of ordinary strata. Technical solutions are required to resolve these two problems in the development of mineral–geothermal co-mining. This study analyzed the strategic position and significance of roadway and chamber construction in deep high-temperature strata and introduced the basic theory of roadway and chamber construction technology in a deep high-temperature environment. Current research is insufficient for application in practical engineering; thus, in the future, diagenetic rock characteristics of rocks under high temperatures should be studied, and the stress–strain characteristics of deep strata under multifield coupling should be described. Targeting the problems of heat disaster and surrounding rock stability control in the construction of deep roadways and chambers, this study summarized and introduced the existing techniques and analyzed the shortcomings in the construction of deep roadways and chambers with co-mining. The traditional deep roadway and chamber construction technology does not fully utilize the resources and fails to provide enough safety guarantees. The construction of deep roadways and chambers should understand the obscure fundamental, physical, and mechanical properties of rock under high temperature and stress and deal with the backward control technology of surrounding rock stability. In addition, new technologies and materials should be used to improve the utilization rate of geothermal energy and achieve carbon neutralization. Finally, establishing a technical system for fine geological survey, optimization of surrounding rock cooling and stability control technology, and roadway and chamber risk monitoring is discussed in this paper.

     

  • loading
  • [1]
    謝和平, 吳立新, 鄭德志. 2025年中國能源消費及煤炭需求預測. 煤炭學報, 2019, 44(7):1949 doi: 10.13225/j.cnki.jccs.2019.0585

    Xie H P, Wu L X, Zheng D Z. Prediction on the energy consumption and coal demand of China in 2025. J China Coal Soc, 2019, 44(7): 1949 doi: 10.13225/j.cnki.jccs.2019.0585
    [2]
    郭奇峰, 蔡美峰, 吳星輝, 等. 面向2035年的金屬礦深部多場智能開采發展戰略. 工程科學學報, 2022, 44(4):476

    Guo Q F, Cai M F, Wu X H, et al. Technological strategies for intelligent mining subject to multifield couplings in deep metal mines toward 2035. Chin J Eng, 2022, 44(4): 476
    [3]
    周宏偉, 謝和平, 左建平. 深部高地應力下巖石力學行為研究進展. 力學進展, 2005, 35(1):91 doi: 10.3321/j.issn:1000-0992.2005.01.009

    Zhou H W, Xie H P, Zuo J P. Developments in researches on mechanical behaviors of rocks under the condition of high ground pressure in the depths. Adv Mech, 2005, 35(1): 91 doi: 10.3321/j.issn:1000-0992.2005.01.009
    [4]
    劉力源, 張樂, 紀洪廣. 深部地下硐室與應力場軸變關系及其圍巖損傷破裂分析. 工程科學學報, 2022, 44(4):516

    Liu L Y, Zhang L, Ji H G. Mechanism analysis of rock damage and failure based on the relation between deep chamber axial variation and in situ stress fields. Chin J Eng, 2022, 44(4): 516
    [5]
    Wang S J, Hu J W, Yan J H, et al. Assessment of geothermal resources in petroliferous basins in China. Math Geosci, 2019, 51(3): 271 doi: 10.1007/s11004-019-09786-9
    [6]
    Cao J C, Zhang N, Wang S Y, et al. Physical model test study on support of super pre-stressed anchor in the mining engineering. Eng Fail Anal, 2020, 118: 104833 doi: 10.1016/j.engfailanal.2020.104833
    [7]
    Cao J C, Zhang N, Wang S Y, et al. Investigation of mechanical properties for group anchors. Appl Sci, 2021, 11(4): 1521 doi: 10.3390/app11041521
    [8]
    Zhou J, Li X B, Mitri H S. Evaluation method of rockburst: State-of-the-art literature review. Tunn Undergr Space Technol, 2018, 81: 632 doi: 10.1016/j.tust.2018.08.029
    [9]
    Fan L, Wang W J, Yuan C, et al. Research on large deformation mechanism of deep roadway with dynamic pressure. Energy Sci Eng, 2020, 8(9): 3348 doi: 10.1002/ese3.672
    [10]
    Zhao Y, Yang T H, Zhang P H, et al. Inversion of seepage channels based on mining-induced microseismic data. Int J Rock Mech Min Sci, 2020, 126: 104180 doi: 10.1016/j.ijrmms.2019.104180
    [11]
    Chao J K, Pan R K, Han X F, et al. The effects of thermal-mechanical coupling on the thermal stability of coal. Combust Sci Technol, 2022, 194(3): 491 doi: 10.1080/00102202.2020.1771328
    [12]
    Jetschny S, Bohlen T, Kurzmann A. Seismic prediction of geological structures ahead of the tunnel using tunnel surface waves. Geophys Prospect, 2011, 59(5): 934
    [13]
    盧運虎, 王世永, 陳勉, 等. 高溫熱處理共和盆地干熱巖力學特性實驗研究. 地下空間與工程學報, 2020, 16(1):114

    Lu Y H, Wang S Y, Chen M, et al. Experimental study on mechanical properties of hot dry rock. Chin J Undergr Space Eng, 2020, 16(1): 114
    [14]
    王用, 邵祖亮, 羅攀登. 高低溫加載對大理巖力學特性影響的試驗研究. 力學季刊, 2020, 41(2):297 doi: 10.15959/j.cnki.0254-0053.2020.02.010

    Wang Y, Shao Z L, Luo P D. Experimental study on the influence of heating and rapid cooling treatment on the mechanical properties of marble. Chin Q Mech, 2020, 41(2): 297 doi: 10.15959/j.cnki.0254-0053.2020.02.010
    [15]
    郤保平, 吳陽春, 王帥, 等. 青海共和盆地花崗巖高溫熱損傷力學特性試驗研究. 巖石力學與工程學報, 2020, 39(1):69

    Xi B P, Wu Y C, Wang S, et al. Experimental study on mechanical properties of granite taken from Gonghe Basin, Qinghai Province after high temperature thermal damage. Chin J Rock Mech Eng, 2020, 39(1): 69
    [16]
    史立涅爾. 巖石力學的物理基礎. 北京: 石油工業出版社, 1957

    Schneider J A. Physical Basis of Rock Mechanics. Beijing: Petroleum Industry Press, 1957
    [17]
    劉希圣. 鉆井工藝原理. 北京: 石油工業出版社, 1981

    Liu X S. Principles of Well Drilling Technology. Beijing: Petroleum Industry Press, 1981
    [18]
    許夢國, 劉紅陽, 王平, 等. 基于RES理論的巖石可鉆性綜合預測研究. 金屬礦山, 2022, 547(1):113 doi: 10.19614/j.cnki.jsks.202201017

    Xu M G, Liu H Y, Wang P, et al. Comprehensive prediciton study on rock drillability based on RES theory. Met Mine, 2022, 547(1): 113 doi: 10.19614/j.cnki.jsks.202201017
    [19]
    Saemi M, Ahmadi M, Varjani A Y. Design of neural networks using genetic algorithm for the permeability estimation of the reservoir. J Petroleum Sci Eng, 2007, 59(1-2): 97 doi: 10.1016/j.petrol.2007.03.007
    [20]
    宋健, 唐春安, 亢方超. 深部礦產與地熱資源協同開采模式. 金屬礦山, 2020(5):124

    Song J, Tang C N, Kang F C. Synergetic mining mode of deep mineral and geothermal resources. Met Mine, 2020(5): 124
    [21]
    鄧紅衛, 田小慧, 徐宜慧. 深部開采圍巖隔熱材料性能試驗研究. 有色金屬工程, 2018, 8(6):103 doi: 10.3969/j.issn.2095-1744.2018.06.020

    Deng H W, Tian X H, Xu Y H. Performance of thermal insulation material for wall rocks in deep mining. Nonferrous Met Eng, 2018, 8(6): 103 doi: 10.3969/j.issn.2095-1744.2018.06.020
    [22]
    Lv X S, Guo P, Liu H F, et al. Preparation of paraffin-based phase-change microcapsules and application in geopolymer coating. J Coat Technol Res, 2018, 15(4): 867 doi: 10.1007/s11998-018-0071-6
    [23]
    Wang Z Q, Shi L, Wang P, et al. Influence of lateral structure and combined support system of split-level entries in the thick seam. Arab J Geosci, 2020, 13(19): 1043 doi: 10.1007/s12517-020-06066-3
    [24]
    Wang R, Liu Y, Deng X H, et al. Analysis on loose circle of surrounding rock of large deformation soft-rock tunnel. Adv Civ Eng, 2020, 2020: 8842976
    [25]
    Li H, Liu M J, Yang H W, et al. Influence range simulation of loose blasting borehole in the coal-rock mass. Therm Sci, 2019, 23: (3 Part A): 1457
    [26]
    康紅普, 林健, 吳擁政, 等. 錨桿構件力學性能及匹配性. 煤炭學報, 2015, 40(1):11 doi: 10.13225/j.cnki.jccs.2014.1818

    Kang H P, Lin J, Wu Y Z, et al. Mechanical performances and compatibility of rock bolt components. J China Coal Soc, 2015, 40(1): 11 doi: 10.13225/j.cnki.jccs.2014.1818
    [27]
    He M C, Gong W L, Wang J, et al. Development of a novel energy-absorbing bolt with extraordinarily large elongation and constant resistance. Int J Rock Mech Min Sci, 2014, 67: 29 doi: 10.1016/j.ijrmms.2014.01.007
    [28]
    Wang F T, Zhang C, Wei S F, et al. Whole section anchor-grouting reinforcement technology and its application in underground roadways with loose and fractured surrounding rock. Tunn Undergr Space Technol, 2016, 51: 133 doi: 10.1016/j.tust.2015.10.029
    [29]
    Qin H, Xie X Y, Tang Y, et al. Experimental study on GPR detection of voids inside and behind tunnel linings. J Environ Eng Geophys, 2020, 25(1): 65 doi: 10.2113/JEEG18-085
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(7)

    Article views (465) PDF downloads(63) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频