Citation: | GUO Qi-feng, QIAN Zhi-hai, PAN Ji-liang, XI Xun, CAI Mei-feng. Mechanical properties and damage evolution of granite under high temperature thermal shock[J]. Chinese Journal of Engineering, 2022, 44(10): 1746-1754. doi: 10.13374/j.issn2095-9389.2022.04.12.005 |
[1] |
藺文靜, 王貴玲, 邵景力, 等. 我國干熱巖資源分布及勘探: 進展與啟示. 地質學報, 2021, 95(5):1366 doi: 10.3969/j.issn.0001-5717.2021.05.004
Lin W J, Wang G L, Shao J L, et al. Distribution and exploration of hot dry rock resources in China: Progress and inspiration. Acta Geol Sin, 2021, 95(5): 1366 doi: 10.3969/j.issn.0001-5717.2021.05.004
|
[2] |
王貴玲, 劉彥廣, 朱喜, 等. 中國地熱資源現狀及發展趨勢. 地學前緣, 2020, 27(1):1
Wang G L, Liu Y G, Zhu X, et al. The status and development trend of geothermal resources in China. Earth Sci Front, 2020, 27(1): 1
|
[3] |
藺文靜, 劉志明, 馬峰, 等. 我國陸區干熱巖資源潛力估算. 地球學報, 2012, 33(5):807 doi: 10.3975/cagsb.2012.05.12
Lin W J, Liu Z M, Ma F, et al. An estimation of HDR resources in China’s mainland. Acta Geosci Sin, 2012, 33(5): 807 doi: 10.3975/cagsb.2012.05.12
|
[4] |
李德威, 王焰新. 干熱巖地熱能研究與開發的若干重大問題. 地球科學, 2015, 40(11):1858
Li D W, Wang Y X. Major issues of research and development of hot dry rock geothermal energy. Earth Sci, 2015, 40(11): 1858
|
[5] |
甘浩男, 王貴玲, 藺文靜, 等. 中國干熱巖資源主要賦存類型與成因模式. 科技導報, 2015, 33(19):22 doi: 10.3981/j.issn.1000-7857.2015.19.002
Gan H N, Wang G L, Lin W J, et al. Research on the occurrence types and genetic models of hot dry rock resources in China. Sci Technol Rev, 2015, 33(19): 22 doi: 10.3981/j.issn.1000-7857.2015.19.002
|
[6] |
許天福, 張延軍, 曾昭發, 等. 增強型地熱系統(干熱巖)開發技術進展. 科技導報, 2012, 30(32):42 doi: 10.3981/j.issn.1000-7857.2012.32.004
Xu T F, Zhang Y J, Zeng Z F, et al. Technology progress in an enhanced geothermal system (hot dry rock). Sci Technol Rev, 2012, 30(32): 42 doi: 10.3981/j.issn.1000-7857.2012.32.004
|
[7] |
廖志杰, 萬天豐, 張振國. 增強型地熱系統: 潛力大、開發難. 地學前緣, 2015, 22(1):335
Liao Z J, Wan T F, Zhang Z G. The enhanced geothermal system(EGS): Huge capacity and difficult exploitation. Earth Sci Front, 2015, 22(1): 335
|
[8] |
許天福, 袁益龍, 姜振蛟, 等. 干熱巖資源和增強型地熱工程: 國際經驗和我國展望. 吉林大學學報(地球科學版), 2016, 46(4):1139
Xu T F, Yuan Y L, Jiang Z J, et al. Hot dry rock and enhanced geothermal engineering: International experience and China prospect. J Jilin Univ (Earth Sci Ed)
|
[9] |
亢方超, 唐春安. 基于開挖的增強型地熱系統概述. 地學前緣, 2020, 27(1):185
Kang F C, Tang C A. Overview of enhanced geothermal system (EGS) based on excavation in China. Earth Sci Front, 2020, 27(1): 185
|
[10] |
宋健, 唐春安, 亢方超. 深部礦產與地熱資源協同開采模式. 金屬礦山, 2020(5):124
Song J, Tang C A, Kang F C. Synergetic mining mode of deep mineral and geothermal resources. Met Mine, 2020(5): 124
|
[11] |
蔡美峰, 多吉, 陳湘生, 等. 深部礦產和地熱資源共采戰略研究. 中國工程科學, 2021, 23(6):43
Cai M F, Dor J, Chen X S, et al. Development strategy for Co-mining of the deep mineral and geothermal resources. Strateg Study CAE, 2021, 23(6): 43
|
[12] |
郭奇峰, 蔡美峰, 吳星輝, 等. 面向2035年的金屬礦深部多場智能開采發展戰略. 工程科學學報, 2022, 44(4):476
Guo Q F, Cai M F, Wu X H, et al. Technological strategies for intelligent mining subject to multifield couplings in deep metal mines toward 2035. Chin J Eng, 2022, 44(4): 476
|
[13] |
Guo Q F, Xi X, Yang S T, et al. Technology strategies to achieve carbon peak and carbon neutrality for China’s metal mines. Int J Miner Metall Mater, 2022, 29(4): 626 doi: 10.1007/s12613-021-2374-3
|
[14] |
吳星輝, 蔡美峰, 任奮華, 等. 不同熱處理作用下花崗巖縱波波速和導熱能力的演化規律分析. 巖石力學與工程學報, 2022, 41(3):457 doi: 10.13722/j.cnki.jrme.2021.0532
Wu X H, Cai M F, Ren F H, et al. Evolutions of P-wave velocity and thermal conductivity of granite under different thermal treatments. Chin J Rock Mech Eng, 2022, 41(3): 457 doi: 10.13722/j.cnki.jrme.2021.0532
|
[15] |
賈蓬, 楊其要, 劉冬橋, 等. 高溫花崗巖水冷卻后物理力學特性及微觀破裂特征. 巖土力學, 2021, 42(6):1568
Jia P, Yang Q Y, Liu D Q, et al. Physical and mechanical properties and related microscopic characteristics of high-temperature granite after water-cooling. Rock Soil Mech, 2021, 42(6): 1568
|
[16] |
萬志軍, 趙陽升, 董付科, 等. 高溫及三軸應力下花崗巖體力學特性的實驗研究. 巖石力學與工程學報, 2008, 27(1):72 doi: 10.3321/j.issn:1000-6915.2008.01.011
Wan Z J, Zhao Y S, Dong F K, et al. Experimental study on mechanical characteristics of granite under high temperatures and triaxial stresses. Chin J Rock Mech Eng, 2008, 27(1): 72 doi: 10.3321/j.issn:1000-6915.2008.01.011
|
[17] |
徐小麗, 高峰, 張志鎮, 等. 實時高溫下加載速率對花崗巖力學特性影響的試驗研究. 巖土力學, 2015, 36(8):2184
Xu X L, Gao F, Zhang Z Z, et al. Experimental study of the effect of loading rates on mechanical properties of granite at real-time high temperature. Rock Soil Mech, 2015, 36(8): 2184
|
[18] |
郤保平, 趙陽升. 600℃內高溫狀態花崗巖遇水冷卻后力學特性試驗研究. 巖石力學與工程學報, 2010, 29(5):892
Xi B P, Zhao Y S. Experimental research on mechanical properties of water-cooled granite under high temperatures within 600 ℃. Chin J Rock Mech Eng, 2010, 29(5): 892
|
[19] |
朱振南, 田紅, 董楠楠, 等. 高溫花崗巖遇水冷卻后物理力學特性試驗研究. 巖土力學, 2018, 39(增刊2): 169
Zhu Z N, Tian H, Dong N N, et al. Experimental study of physico-mechanical properties of heat-treated granite by water cooling. Rock Soil Mech, 2018, 39(Suppl 2): 169
|
[20] |
吳星輝, 李鵬, 郭奇峰, 等. 熱損傷巖石物理力學特性演化機制研究進展. 工程科學學報, 2022, 44(5):827
Wu X H, Li P, Guo Q F, et al. Research progress on the evolution of physical and mechanical properties of thermally damaged rock. Chin J Eng, 2022, 44(5): 827
|
[21] |
趙齊, 李二兵, 王永超, 等. 北山花崗巖熱-力耦合力學特性及損傷本構模型研究. 南京工業大學學報(自然科學版), 2019, 41(6):792
Zhao Q, Li E B, Wang Y C, et al. Thermal-mechanical coupling mechanical properties and damage constitutive model of Beishan granite. J Nanjing Tech Univ (Nat Sci Ed)
|
[22] |
朱振南, 蔣國盛, 田紅, 等. 基于Normal分布的巖石統計熱損傷本構模型研究. 中南大學學報(自然科學版), 2019, 50(6):1411 doi: 10.11817/j.issn.1672-7207.2019.06.020
Zhu Z N, Jiang G S, Tian H, et al. Study on statistical thermal damage constitutive model of rock based on normal distribution. J Central South Univ (Sci Technol)
|
[23] |
閔明. 北山花崗巖高溫力學特性試驗研究[學位論文]. 徐州: 中國礦業大學, 2019
Min M. Experimental Study on High Temperature Mechanical Properties of Beishan Granite [Dissertation]. Xuzhou: China University of Mining and Technology, 2019
|
[24] |
蔣浩鵬, 姜諳男, 楊秀榮. 基于Weibull分布的高溫巖石統計損傷本構模型及其驗證. 巖土力學, 2021, 42(7):1894
Jiang H P, Jiang A N, Yang X R. Statistical damage constitutive model of high temperature rock based on Weibull distribution and its verification. Rock Soil Mech, 2021, 42(7): 1894
|
[25] |
Kachanov L M. Introduction to Continuum Damage Mechanics. Dordrecht: Springer Netherlands, 1986
|
[26] |
Rabotnov Y N. Paper 68: On the equation of state of creep. Proc Inst Mech Eng Conf Proc, 1963, 178(1): 2
|
[27] |
張全勝, 楊更社, 任建喜. 巖石損傷變量及本構方程的新探討. 巖石力學與工程學報, 2003, 22(1):30 doi: 10.3321/j.issn:1000-6915.2003.01.005
Zhang Q S, Yang G S, Ren J X. New study of damage variable and constitutive equation of rock. Chin J Rock Mech Eng, 2003, 22(1): 30 doi: 10.3321/j.issn:1000-6915.2003.01.005
|
[28] |
Pan J L, Cai M F, Li P, et al. A damage constitutive model of rock-like materials containing a single crack under the action of chemical corrosion and uniaxial compression. J Cent South Univ, 2022, 29(2): 486 doi: 10.1007/s11771-022-4949-1
|
[29] |
潘繼良, 高召寧, 任奮華. 考慮應變軟化和擴容的圓形巷道圍巖強度準則效應. 煤炭學報, 2018, 43(12):3293
Pan J L, Gao Z N, Ren F H. Effect of strength criteria on surrounding rock of circular roadway considering strain softening and dilatancy. J China Coal Soc, 2018, 43(12): 3293
|
[30] |
潘繼良, 郭奇峰, 田莉梅, 等. 基于統一強度理論的巖石統計損傷軟化本構模型及其參數研究. 礦業研究與開發, 2019, 39(8):38
Pan J L, Guo Q F, Tian L M, et al. Study on rock statistical damage softening constitutive model and its parameters based on the unified strength theory. Min Res Dev, 2019, 39(8): 38
|
[31] |
Liu X S, Ning J G, Tan Y L, et al. Damage constitutive model based on energy dissipation for intact rock subjected to cyclic loading. Int J Rock Mech Min Sci, 2016, 85: 27 doi: 10.1016/j.ijrmms.2016.03.003
|