<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 10
Sep.  2022
Turn off MathJax
Article Contents
GUO Qi-feng, QIAN Zhi-hai, PAN Ji-liang, XI Xun, CAI Mei-feng. Mechanical properties and damage evolution of granite under high temperature thermal shock[J]. Chinese Journal of Engineering, 2022, 44(10): 1746-1754. doi: 10.13374/j.issn2095-9389.2022.04.12.005
Citation: GUO Qi-feng, QIAN Zhi-hai, PAN Ji-liang, XI Xun, CAI Mei-feng. Mechanical properties and damage evolution of granite under high temperature thermal shock[J]. Chinese Journal of Engineering, 2022, 44(10): 1746-1754. doi: 10.13374/j.issn2095-9389.2022.04.12.005

Mechanical properties and damage evolution of granite under high temperature thermal shock

doi: 10.13374/j.issn2095-9389.2022.04.12.005
More Information
  • Corresponding author: E-mail: xixun@ustb.edu.cn
  • Received Date: 2022-04-12
    Available Online: 2022-06-22
  • Publish Date: 2022-10-25
  • Hot dry rock (HDR) is an underground rock with high temperatures (usually above 180 °C), low porosity, and low permeability. The extraction of geothermal energy from HDR generally requires the stimulation of man-made reservoirs. In the enhanced geothermal system (EGS) project, high-pressure water is usually injected into the deep HDR reservoir from the injection well, and the artificial fracture network is stimulated via fracking. The ultimate goal is to enhance fluid flow and heat exchange between injection and production wells. During this period, thermal shock induced by the injected cold water, also known as thermal stimulation, leads to thermal fracture of the HDR, which contributes to the formation of fractures near the injection well. However, this process results in a series of rock damage problems to the high-temperature rock mass, such as borehole collapse and microseismicity. To analyze the mechanical properties and damage evolution of high-temperature granite after thermal shock, the uniaxial compression test of granite specimens at different temperatures in the range of 25 °C–600 ℃ was conducted, and the stress–strain relationship of the specimens was obtained. Based on the theory of damage mechanics, a thermal–mechanical coupled damage constitutive model considering the combination of the initial thermal shock damage and the microelement fracture damage during loading was proposed, and the relevant parameters of the statistical damage constitutive model were theoretically solved. Furthermore, given the effect of pore structure deterioration caused by thermal shock, the constitutive relationship of thermal shock granite was modified by introducing a compaction coefficient. The statistical damage constitutive model was also verified by the experimental results. The influence of temperature on the damage evolution of thermal shock granite under uniaxial compression was discussed. Results showed that with the increase in thermal shock temperature, the initial thermal damage of the granite specimen increases continuously, resulting in a nonlinear compaction stage in the stress–strain curve. The statistical damage constitutive model modified by the compaction coefficient can accurately characterize the nonlinear compaction characteristics of thermal shock granite specimens in the initial loading stage. When the thermal shock temperature is low, the damage variable evolution curve rises steeply. However, with the increase in the thermal shock temperature, the increase rate of the curve gradually slows down and changes from nonlinear to linear. The research results not only help elucidate the deterioration process of the mechanical properties of thermal shock granite but also provide important theoretical guidance for the construction of accurate numerical calculation models and engineering scheme demonstrations.

     

  • loading
  • [1]
    藺文靜, 王貴玲, 邵景力, 等. 我國干熱巖資源分布及勘探: 進展與啟示. 地質學報, 2021, 95(5):1366 doi: 10.3969/j.issn.0001-5717.2021.05.004

    Lin W J, Wang G L, Shao J L, et al. Distribution and exploration of hot dry rock resources in China: Progress and inspiration. Acta Geol Sin, 2021, 95(5): 1366 doi: 10.3969/j.issn.0001-5717.2021.05.004
    [2]
    王貴玲, 劉彥廣, 朱喜, 等. 中國地熱資源現狀及發展趨勢. 地學前緣, 2020, 27(1):1

    Wang G L, Liu Y G, Zhu X, et al. The status and development trend of geothermal resources in China. Earth Sci Front, 2020, 27(1): 1
    [3]
    藺文靜, 劉志明, 馬峰, 等. 我國陸區干熱巖資源潛力估算. 地球學報, 2012, 33(5):807 doi: 10.3975/cagsb.2012.05.12

    Lin W J, Liu Z M, Ma F, et al. An estimation of HDR resources in China’s mainland. Acta Geosci Sin, 2012, 33(5): 807 doi: 10.3975/cagsb.2012.05.12
    [4]
    李德威, 王焰新. 干熱巖地熱能研究與開發的若干重大問題. 地球科學, 2015, 40(11):1858

    Li D W, Wang Y X. Major issues of research and development of hot dry rock geothermal energy. Earth Sci, 2015, 40(11): 1858
    [5]
    甘浩男, 王貴玲, 藺文靜, 等. 中國干熱巖資源主要賦存類型與成因模式. 科技導報, 2015, 33(19):22 doi: 10.3981/j.issn.1000-7857.2015.19.002

    Gan H N, Wang G L, Lin W J, et al. Research on the occurrence types and genetic models of hot dry rock resources in China. Sci Technol Rev, 2015, 33(19): 22 doi: 10.3981/j.issn.1000-7857.2015.19.002
    [6]
    許天福, 張延軍, 曾昭發, 等. 增強型地熱系統(干熱巖)開發技術進展. 科技導報, 2012, 30(32):42 doi: 10.3981/j.issn.1000-7857.2012.32.004

    Xu T F, Zhang Y J, Zeng Z F, et al. Technology progress in an enhanced geothermal system (hot dry rock). Sci Technol Rev, 2012, 30(32): 42 doi: 10.3981/j.issn.1000-7857.2012.32.004
    [7]
    廖志杰, 萬天豐, 張振國. 增強型地熱系統: 潛力大、開發難. 地學前緣, 2015, 22(1):335

    Liao Z J, Wan T F, Zhang Z G. The enhanced geothermal system(EGS): Huge capacity and difficult exploitation. Earth Sci Front, 2015, 22(1): 335
    [8]
    許天福, 袁益龍, 姜振蛟, 等. 干熱巖資源和增強型地熱工程: 國際經驗和我國展望. 吉林大學學報(地球科學版), 2016, 46(4):1139

    Xu T F, Yuan Y L, Jiang Z J, et al. Hot dry rock and enhanced geothermal engineering: International experience and China prospect. J Jilin Univ (Earth Sci Ed), 2016, 46(4): 1139
    [9]
    亢方超, 唐春安. 基于開挖的增強型地熱系統概述. 地學前緣, 2020, 27(1):185

    Kang F C, Tang C A. Overview of enhanced geothermal system (EGS) based on excavation in China. Earth Sci Front, 2020, 27(1): 185
    [10]
    宋健, 唐春安, 亢方超. 深部礦產與地熱資源協同開采模式. 金屬礦山, 2020(5):124

    Song J, Tang C A, Kang F C. Synergetic mining mode of deep mineral and geothermal resources. Met Mine, 2020(5): 124
    [11]
    蔡美峰, 多吉, 陳湘生, 等. 深部礦產和地熱資源共采戰略研究. 中國工程科學, 2021, 23(6):43

    Cai M F, Dor J, Chen X S, et al. Development strategy for Co-mining of the deep mineral and geothermal resources. Strateg Study CAE, 2021, 23(6): 43
    [12]
    郭奇峰, 蔡美峰, 吳星輝, 等. 面向2035年的金屬礦深部多場智能開采發展戰略. 工程科學學報, 2022, 44(4):476

    Guo Q F, Cai M F, Wu X H, et al. Technological strategies for intelligent mining subject to multifield couplings in deep metal mines toward 2035. Chin J Eng, 2022, 44(4): 476
    [13]
    Guo Q F, Xi X, Yang S T, et al. Technology strategies to achieve carbon peak and carbon neutrality for China’s metal mines. Int J Miner Metall Mater, 2022, 29(4): 626 doi: 10.1007/s12613-021-2374-3
    [14]
    吳星輝, 蔡美峰, 任奮華, 等. 不同熱處理作用下花崗巖縱波波速和導熱能力的演化規律分析. 巖石力學與工程學報, 2022, 41(3):457 doi: 10.13722/j.cnki.jrme.2021.0532

    Wu X H, Cai M F, Ren F H, et al. Evolutions of P-wave velocity and thermal conductivity of granite under different thermal treatments. Chin J Rock Mech Eng, 2022, 41(3): 457 doi: 10.13722/j.cnki.jrme.2021.0532
    [15]
    賈蓬, 楊其要, 劉冬橋, 等. 高溫花崗巖水冷卻后物理力學特性及微觀破裂特征. 巖土力學, 2021, 42(6):1568

    Jia P, Yang Q Y, Liu D Q, et al. Physical and mechanical properties and related microscopic characteristics of high-temperature granite after water-cooling. Rock Soil Mech, 2021, 42(6): 1568
    [16]
    萬志軍, 趙陽升, 董付科, 等. 高溫及三軸應力下花崗巖體力學特性的實驗研究. 巖石力學與工程學報, 2008, 27(1):72 doi: 10.3321/j.issn:1000-6915.2008.01.011

    Wan Z J, Zhao Y S, Dong F K, et al. Experimental study on mechanical characteristics of granite under high temperatures and triaxial stresses. Chin J Rock Mech Eng, 2008, 27(1): 72 doi: 10.3321/j.issn:1000-6915.2008.01.011
    [17]
    徐小麗, 高峰, 張志鎮, 等. 實時高溫下加載速率對花崗巖力學特性影響的試驗研究. 巖土力學, 2015, 36(8):2184

    Xu X L, Gao F, Zhang Z Z, et al. Experimental study of the effect of loading rates on mechanical properties of granite at real-time high temperature. Rock Soil Mech, 2015, 36(8): 2184
    [18]
    郤保平, 趙陽升. 600℃內高溫狀態花崗巖遇水冷卻后力學特性試驗研究. 巖石力學與工程學報, 2010, 29(5):892

    Xi B P, Zhao Y S. Experimental research on mechanical properties of water-cooled granite under high temperatures within 600 ℃. Chin J Rock Mech Eng, 2010, 29(5): 892
    [19]
    朱振南, 田紅, 董楠楠, 等. 高溫花崗巖遇水冷卻后物理力學特性試驗研究. 巖土力學, 2018, 39(增刊2): 169

    Zhu Z N, Tian H, Dong N N, et al. Experimental study of physico-mechanical properties of heat-treated granite by water cooling. Rock Soil Mech, 2018, 39(Suppl 2): 169
    [20]
    吳星輝, 李鵬, 郭奇峰, 等. 熱損傷巖石物理力學特性演化機制研究進展. 工程科學學報, 2022, 44(5):827

    Wu X H, Li P, Guo Q F, et al. Research progress on the evolution of physical and mechanical properties of thermally damaged rock. Chin J Eng, 2022, 44(5): 827
    [21]
    趙齊, 李二兵, 王永超, 等. 北山花崗巖熱-力耦合力學特性及損傷本構模型研究. 南京工業大學學報(自然科學版), 2019, 41(6):792

    Zhao Q, Li E B, Wang Y C, et al. Thermal-mechanical coupling mechanical properties and damage constitutive model of Beishan granite. J Nanjing Tech Univ (Nat Sci Ed), 2019, 41(6): 792
    [22]
    朱振南, 蔣國盛, 田紅, 等. 基于Normal分布的巖石統計熱損傷本構模型研究. 中南大學學報(自然科學版), 2019, 50(6):1411 doi: 10.11817/j.issn.1672-7207.2019.06.020

    Zhu Z N, Jiang G S, Tian H, et al. Study on statistical thermal damage constitutive model of rock based on normal distribution. J Central South Univ (Sci Technol), 2019, 50(6): 1411 doi: 10.11817/j.issn.1672-7207.2019.06.020
    [23]
    閔明. 北山花崗巖高溫力學特性試驗研究[學位論文]. 徐州: 中國礦業大學, 2019

    Min M. Experimental Study on High Temperature Mechanical Properties of Beishan Granite [Dissertation]. Xuzhou: China University of Mining and Technology, 2019
    [24]
    蔣浩鵬, 姜諳男, 楊秀榮. 基于Weibull分布的高溫巖石統計損傷本構模型及其驗證. 巖土力學, 2021, 42(7):1894

    Jiang H P, Jiang A N, Yang X R. Statistical damage constitutive model of high temperature rock based on Weibull distribution and its verification. Rock Soil Mech, 2021, 42(7): 1894
    [25]
    Kachanov L M. Introduction to Continuum Damage Mechanics. Dordrecht: Springer Netherlands, 1986
    [26]
    Rabotnov Y N. Paper 68: On the equation of state of creep. Proc Inst Mech Eng Conf Proc, 1963, 178(1): 2
    [27]
    張全勝, 楊更社, 任建喜. 巖石損傷變量及本構方程的新探討. 巖石力學與工程學報, 2003, 22(1):30 doi: 10.3321/j.issn:1000-6915.2003.01.005

    Zhang Q S, Yang G S, Ren J X. New study of damage variable and constitutive equation of rock. Chin J Rock Mech Eng, 2003, 22(1): 30 doi: 10.3321/j.issn:1000-6915.2003.01.005
    [28]
    Pan J L, Cai M F, Li P, et al. A damage constitutive model of rock-like materials containing a single crack under the action of chemical corrosion and uniaxial compression. J Cent South Univ, 2022, 29(2): 486 doi: 10.1007/s11771-022-4949-1
    [29]
    潘繼良, 高召寧, 任奮華. 考慮應變軟化和擴容的圓形巷道圍巖強度準則效應. 煤炭學報, 2018, 43(12):3293

    Pan J L, Gao Z N, Ren F H. Effect of strength criteria on surrounding rock of circular roadway considering strain softening and dilatancy. J China Coal Soc, 2018, 43(12): 3293
    [30]
    潘繼良, 郭奇峰, 田莉梅, 等. 基于統一強度理論的巖石統計損傷軟化本構模型及其參數研究. 礦業研究與開發, 2019, 39(8):38

    Pan J L, Guo Q F, Tian L M, et al. Study on rock statistical damage softening constitutive model and its parameters based on the unified strength theory. Min Res Dev, 2019, 39(8): 38
    [31]
    Liu X S, Ning J G, Tan Y L, et al. Damage constitutive model based on energy dissipation for intact rock subjected to cyclic loading. Int J Rock Mech Min Sci, 2016, 85: 27 doi: 10.1016/j.ijrmms.2016.03.003
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article views (454) PDF downloads(59) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频