Citation: | WANG Lei-ming, LUO Yan-kuo, YIN Sheng-hua, ZHOU Gen-mao, LIAO Wen-sheng, LI Zhao-kun. Exploration study of synergistic mining between the fluidized leaching process enhancement of deep metal mines and geothermal energy development[J]. Chinese Journal of Engineering, 2022, 44(10): 1694-1708. doi: 10.13374/j.issn2095-9389.2022.04.10.004 |
[1] |
古德生, 周科平. 現代金屬礦業的發展主題. 金屬礦山, 2012(7):1 doi: 10.3969/j.issn.1001-1250.2012.07.001
Gu D S, Zhou K P. Development theme of the modern metal mining. Met Mine, 2012(7): 1 doi: 10.3969/j.issn.1001-1250.2012.07.001
|
[2] |
新華社. 2021年我國十種常用有色金屬產量6454.3萬噸規上企業實現利潤創新高 [EB/OL]. 中國政府網 (2022-02-17) [2022-04-10]. http://www.gov.cn/xinwen/2022-02/17/content_5674324.htm
Xinhua News Agency. In 2021, the output of ten common non-ferrous metals in China was 64.543 million tons, and enterprises above designated size achieved a record high profit [EB/OL]. www. gov. cn (2022-02-17) [2022-04-10]. http://www.gov.cn/xinwen/202202/17/content_5674324.htm
|
[3] |
吳愛祥, 王洪江, 尹升華, 等. 深層金屬礦原位流態化開采構想. 礦業科學學報, 2021, 6(3):255 doi: 10.19606/j.cnki.jmst.2021.03.001
Wu A X, Wang H J, Yin S H, et al. Conception of in situ fluidization mining for deep metal mines. J Min Sci Technol, 2021, 6(3): 255 doi: 10.19606/j.cnki.jmst.2021.03.001
|
[4] |
謝和平, 高峰, 鞠楊, 等. 深地煤炭資源流態化開采理論與技術構想. 煤炭學報, 2017, 42(3):547 doi: 10.13225/j.cnki.jccs.2017.0299
Xie H P, Gao F, Ju Y, et al. Theoretical and technological conception of the fluidization mining for deep coal resources. J China Coal Soc, 2017, 42(3): 547 doi: 10.13225/j.cnki.jccs.2017.0299
|
[5] |
謝和平, 鞠楊, 高明忠, 等. 煤炭深部原位流態化開采的理論與技術體系. 煤炭學報, 2018, 43(5):1210 doi: 10.13225/j.cnki.jccs.2018.0519
Xie H P, Ju Y, Gao M Z, et al. Theories and technologies for in situ fluidized mining of deep underground coal resources. J China Coal Soc, 2018, 43(5): 1210 doi: 10.13225/j.cnki.jccs.2018.0519
|
[6] |
謝和平, 高峰, 鞠楊. 深部巖體力學研究與探索. 巖石力學與工程學報, 2015, 34(11):2161 doi: 10.13722/j.cnki.jrme.2015.1369
Xie H P, Gao F, Ju Y. Research and development of rock mechanics in deep ground engineering. Chin J Rock Mech Eng, 2015, 34(11): 2161 doi: 10.13722/j.cnki.jrme.2015.1369
|
[7] |
何滿潮, 謝和平, 彭蘇萍, 等. 深部開采巖體力學研究. 巖石力學與工程學報, 2005, 24(16):2803 doi: 10.3321/j.issn:1000-6915.2005.16.001
He M C, Xie H P, Peng S P, et al. Study on rock mechanics in deep mining engineering. Chin J Rock Mech Eng, 2005, 24(16): 2803 doi: 10.3321/j.issn:1000-6915.2005.16.001
|
[8] |
謝和平, 高峰, 鞠楊, 等. 深部開采的定量界定與分析. 煤炭學報, 2015, 40(1):1 doi: 10.13225/j.cnki.jccs.2014.1690
Xie H P, Gao F, Ju Y, et al. Quantitative definition and investigation of deep mining. J China Coal Soc, 2015, 40(1): 1 doi: 10.13225/j.cnki.jccs.2014.1690
|
[9] |
何滿潮. 深部的概念體系及工程評價指標. 巖石力學與工程學報, 2005, 24(16):2854 doi: 10.3321/j.issn:1000-6915.2005.16.007
He M C. Conception system and evaluation indexes for deep engineering. Chin J Rock Mech Eng, 2005, 24(16): 2854 doi: 10.3321/j.issn:1000-6915.2005.16.007
|
[10] |
謝和平, 周宏偉, 薛東杰, 等. 煤炭深部開采與極限開采深度的研究與思考. 煤炭學報, 2012, 37(4):535 doi: 10.13225/j.cnki.jccs.2012.04.011
Xie H P, Zhou H W, Xue D J, et al. Research and consideration on deep coal mining and critical mining depth. J China Coal Soc, 2012, 37(4): 535 doi: 10.13225/j.cnki.jccs.2012.04.011
|
[11] |
蔡美峰, 薛鼎龍, 任奮華. 金屬礦深部開采現狀與發展戰略. 工程科學學報, 2019, 41(4):417
Cai M F, Xue D L, Ren F H. Current status and development strategy of metal mines. Chin J Eng, 2019, 41(4): 417
|
[12] |
蔡美峰. 金屬礦山當前面臨的主要問題及對策. 礦業工程, 2003, 1(1):40 doi: 10.3969/j.issn.1671-8550.2003.01.017
Cai M F. Main issues metallic mines now are facing and solutions of the problems. Min Eng, 2003, 1(1): 40 doi: 10.3969/j.issn.1671-8550.2003.01.017
|
[13] |
尹升華, 王雷鳴, 吳愛祥, 等. 我國銅礦微生物浸出技術的研究進展. 工程科學學報, 2019, 41(2):143
Yin S H, Wang L M, Wu A X, et al. Progress of research in copper bioleaching technology in China. Chin J Eng, 2019, 41(2): 143
|
[14] |
王家臣, 楊勝利, 劉淑琴, 等. 急傾斜煤層開采技術現狀與流態化開采構想. 煤炭科學技術, 2022, 50(1):48
Wang J C, Yang S L, Liu S Q, et al. Technology status and fluidized mining conception for steeply inclined coal seams. Coal Sci Technol, 2022, 50(1): 48
|
[15] |
蔡美峰, 多吉, 陳湘生, 等. 深部礦產和地熱資源共采戰略研究. 中國工程科學, 2021, 23(6):43
Cai M F, Dor J, Chen X S, et al. Development strategy for Co-mining of the deep mineral and geothermal resources. Strateg Study CAE, 2021, 23(6): 43
|
[16] |
廖成林, 孫鎮德. 懷俄明州天然堿礦利用地熱加熱井下空氣. 國外采礦技術快報, 1988(10):9
Liao C L, Sun Z D. Wyoming trona mine uses geothermal energy to heat underground air. Min Technol, 1988(10): 9
|
[17] |
李德威, 王焰新. 干熱巖地熱能研究與開發的若干重大問題. 地球科學, 2015, 40(11):1858
Li D W, Wang Y X. Major issues of research and development of hot dry rock geothermal energy. Earth Sci, 2015, 40(11): 1858
|
[18] |
王貴玲, 張薇, 梁繼運, 等. 中國地熱資源潛力評價. 地球學報, 2017, 38(4):449 doi: 10.3975/cagsb.2017.04.02
Wang G L, Zhang W, Liang J Y, et al. Evaluation of geothermal resources potential in China. Acta Geosci Sin, 2017, 38(4): 449 doi: 10.3975/cagsb.2017.04.02
|
[19] |
宋健, 唐春安, 亢方超. 深部礦產與地熱資源協同開采模式. 金屬礦山, 2020(5):124 doi: 10.19614/j.cnki.jsks.202005018
Song J, Tang C N, Kang F C. Synergetic mining mode of deep mineral and geothermal resources. Met Mine, 2020(5): 124 doi: 10.19614/j.cnki.jsks.202005018
|
[20] |
陳慶發, 周科平, 古德生. 協同開采與采空區協同利用. 中國礦業, 2011, 20(12):77 doi: 10.3969/j.issn.1004-4051.2011.12.020
Chen Q F, Zhou K P, Gu D S. Synergetic mining and cavity synergetic utilization. China Min Mag, 2011, 20(12): 77 doi: 10.3969/j.issn.1004-4051.2011.12.020
|
[21] |
陸曉如. 地熱發電, 溫度還不夠——專訪中國工程院院士多吉. 中國石油石化, 2019(18):17
Lu X R. Geothermal power generation, not enough temperature—An interview with Dor ji, academician of Chinese academy of engineering. China Petrochem, 2019(18): 17
|
[22] |
中華人民共和國國務院. 國務院關于加快建立健全綠色低碳循環發展經濟體系的指導意見 [EB/OL]. 中國政府網 (2021-02-22) [2022-04-10]. http://www.gov.cn/zhengce/content/2021-02/22/content_5588274.htm
State Council of the People's Republic of China. Guiding opinions of the State Council on accelerating the establishment and improvement of a green, low-carbon and circular economic development system [EB/OL]. www. gov. cn (2021-02-22) [2022-03-16]. http://www.gov.cn/zhengce/content/2021-02/22/content_5588274.htm
|
[23] |
李現文. 山東明確找礦重點: 油氣、煤炭、地熱 [N/OL]. 中國自然資源報 (2006-06-02)[2022-04-10].https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CCND&dbname=CCND2006&filename=GTZY200606020012&uniplatform=NZKPT&v=psXS2j86qLkuvab0o8XPMAxk-s_Mbc6GyrtxKciZNGsFxBcTPj5kVeF-69TQ2n9_RHXTRLGfbDM%3d
Li X W. Shandong defines the key points of prospecting: oil and gas, coal and geothermal [N/OL]. China Natural Resources News Agency (2006-06-02) [2022-04-10].https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CCND&dbname=CCND2006&filename=GTZY200606020012&uniplatform=NZKPT&v=psXS2j86qLkuvab0o8XPMAxk-s_Mbc6GyrtxKciZNGsFxBcTPj5kVeF-69TQ2n9_RHXTRLGfbDM%3d
|
[24] |
劉慶獻. 首山一礦地熱資源賦存及開發利用探討. 中國煤田地質, 2007, 19(6):49
Liu Q X. Probe into geothermal resources hosting and development, utilization in Shoushan No. 1 coalmine. Coal Geol China, 2007, 19(6): 49
|
[25] |
劉曉辰. 咸陽: 探明整裝熱礦水型地熱田 [N/OL]. 經濟日報 (2007-09-08)[2022-04-10].https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CCND&dbname=CCND2007&filename=JJRB200709080151&uniplatform=NZKPT&v=Lcjf9c2AQCXesbL8OsstRPslqo-lbG1hwvYMPgA433dLGJEd1mY7SA8oKj9W_QdlOTaVwS_hDxg%3d
LIU Xiao-chen. Xianyang: proved packaged hot ore water geothermal field [N/OL]. Economic daily (2007-09-08)[2022-04-10].https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CCND&dbname=CCND2007&filename=JJRB200709080151&uniplatform=NZKPT&v=Lcjf9c2AQCXesbL8OsstRPslqo-lbG1hwvYMPgA433dLGJEd1mY7SA8oKj9W_QdlOTaVwS_hDxg%3d
|
[26] |
吳景華, 謝俊革, 陳樹義, 等. 吉林省地熱資源狀況與評價研究. 長春工程學院學報(自然科學版), 2008, 9(2):49
Wu J H, Xie J G, Chen S Y, et al. et al. Status and valuation studies of geothermal resources in Jilin Province. J Chang Inst Technol Nat Sci Ed, 2008, 9(2): 49
|
[27] |
陳廣文. 廣東省臺山市銅鑼地熱礦水開發利用價值研究. 大眾科技, 2009, 11(2):87 doi: 10.3969/j.issn.1008-1151.2009.02.041
Chen G W. Study on development and utilization value of Tongluo geothermal mine water in Taishan City, Guangdong Province. Pop Sci Technol, 2009, 11(2): 87 doi: 10.3969/j.issn.1008-1151.2009.02.041
|
[28] |
陳少華. 我省“找礦找水找地熱”勘查工程成果豐碩[N/OL]. 貴州日報 (2011-01-04)[2022-04-10].https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CCND&dbname=CCNDLAST2011&filename=GERB201101040053&uniplatform=NZKPT&v=4Q75w7A1-H4jDwSFbYppobigyMv5YcCd9-HFh_S9EPoNDaBrvPcsuuuvXJg7QySV-nKzAYWVJ00%3d
Chen S H. The exploration project of "prospecting for ore, water and geothermal energy" in our province has achieved fruitful results [N/OL]. Guizhou Daily (2011-01-04)[2022-04-10].https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CCND&dbname=CCNDLAST2011&filename=GERB201101040053&uniplatform=NZKPT&v=4Q75w7A1-H4jDwSFbYppobigyMv5YcCd9-HFh_S9EPoNDaBrvPcsuuuvXJg7QySV-nKzAYWVJ00%3d
|
[29] |
劉大野, 陳立云, 劉民娟, 等. 赤峰市寧城熱礦水田地熱系統分析. 中國煤田地質, 2003, 15(6):40
Liu D Y, Chen L Y, Liu M J, et al. A geothermal system analysis of Ningcheng thermomineral water field, Chifeng City. Coal Geol China, 2003, 15(6): 40
|
[30] |
李仲均. 北京市地熱開發利用史. 河北地質學院學報, 1994, 17(3):271
Li Z J. History of geothermal exploitation and utilization in Beijing. J Hebei Geo Univ, 1994, 17(3): 271
|
[31] |
(陸曉如. 石油行業也可利用地熱、余熱, 但需要創新技術. 中國石油石化, 2018(24):15
Lu X R. The petroleum industry can also use geothermal energy and waste heat, but it needs innovative technology. China Petrochem, 2018(24): 15
|
[32] |
黃嘉超, 李天舒, 谷雪曦. 國際地熱利用發展形勢對中國的啟發. 石化技術, 2020, 27(9):252 doi: 10.3969/j.issn.1006-0235.2020.09.151
Huang J C, Li T S, Gu X X. Enlightenment of international geothermal utilization development situation to China. Petrochem Ind Technol, 2020, 27(9): 252 doi: 10.3969/j.issn.1006-0235.2020.09.151
|
[33] |
LIPTÁK B. 3 technologies to to capture geothermal energy [EB/OL]. Control Global (2020-10-01) [2022-06-24].https://www.controlglobal.com/articles/2020/3-technologies-to-to-capture-geothermal-energy
|
[34] |
Rybach L. Geothermal energy: Sustainability and the environment. Geothermics, 2003, 32(4-6): 463 doi: 10.1016/S0375-6505(03)00057-9
|
[35] |
林永學, 王偉吉, 金軍斌. 順北油氣田鷹1井超深井段鉆井液關鍵技術. 石油鉆探技術, 2019, 47(3):113 doi: 10.11911/syztjs.2019068
Lin Y X, Wang W J, Jin J B. Key drilling fluid technology in the ultra deep section of well Ying-1 in the Shunbei oil and gas field. Petroleum Drill Tech, 2019, 47(3): 113 doi: 10.11911/syztjs.2019068
|
[36] |
石林, 汪海閣, 紀國棟. 中石油鉆井工程技術現狀、挑戰及發展趨勢. 天然氣工業, 2013, 33(10):1 doi: 10.3787/j.issn.1000-0976.2013.10.001
Shi L, Wang H G, Ji G D. Current situation, challenges and developing trend of CNPC's oil & gas drilling. Nat Gas Ind, 2013, 33(10): 1 doi: 10.3787/j.issn.1000-0976.2013.10.001
|
[37] |
趙陽升, 梁衛國, 馮子軍, 等. 原位改性流體化采礦科學、技術與工程. 煤炭學報, 2021, 46(1):25 doi: 10.13225/j.cnki.jccs.yg20.1826
Zhao Y S, Liang W G, Feng Z J, et al. Science, technology and engineering of in situ modified mining by fluidization. J China Coal Soc, 2021, 46(1): 25 doi: 10.13225/j.cnki.jccs.yg20.1826
|
[38] |
Seredkin M, Zabolotsky A, Jeffress G. In situ recovery, an alternative to conventional methods of mining: Exploration, resource estimation, environmental issues, project evaluation and economics. Ore Geol Rev, 2016, 79: 500 doi: 10.1016/j.oregeorev.2016.06.016
|
[39] |
楊仕教, 李明. 用就地破碎浸出法回收湖南柏坊銅礦殘礦的探討. 湖南冶金, 1998, 26(4):31
Yang S J, Li M. Discussion on recovery of residual ore from baifang copper mine in Hunan Province by in-situ crushing leaching method. Hunan Metall, 1998, 26(4): 31
|
[40] |
王昌漢. 積極推廣和應用就地破碎浸礦法. 江西有色金屬, 1996(2):9
Wang C H. Actively popularize and apply the in situ crushing leaching method. Jiangxi Nonferrous Met, 1996(2): 9
|
[41] |
楊仕教, 古德生, 丁德馨, 等. 用原地破碎浸出采礦法回收柏坊銅礦殘礦. 有色金屬, 2002(4):102
Yang S J, Gu D S, Ding D X, et al. Residual ore body recovery by in situ fragmentation-leaching in Beifang copper mine. Nonferrous Met, 2002(4): 102
|
[42] |
楊仕教, 李明. 某鈾礦就地破碎浸出采場底部結構的選擇與施工. 中南工學院學報, 1998, 12(2):78
Yang S J, Li M. Selection and construction of polycrystalline substance for in-situ leaching of blasted uranium ore in a uranium mine. J Univ South China Sci Technol, 1998, 12(2): 78
|
[43] |
王昌漢. 就地破碎溶浸采礦法幾個關鍵技術的探討. 南華大學學報(理工版), 2001, 15(2):13
Wang C H. Several key techniques in the smash-leaching-mining on the spot. J Central South Inst Technol, 2001, 15(2): 13
|
[44] |
王昌漢. 就地破碎浸鈾法的技術特性及最佳應用準則. 中國核科技報告, 2000(1):878
Wang C H. Technical characteristics and optimum application conditions of In-situ leaching of uranium ore body. China Nucl Sci Technol Rep, 2000(1): 878
|
[45] |
王昌漢, 朱紅兵, 李旭. 就地破碎浸礦法的礦塊結構參數的確定原則及特點. 中南工學院學報, 2000, 14(4):6
Wang C H, Zhu H B, Li X. Confirming principles & characteristics of the ore-block's structure parameter in the smash-leaching-mining on the spot. J Central South Inst Technol, 2000, 14(4): 6
|
[46] |
王昌漢. 井下就地破碎浸銅法現場試驗前期研究. 濕法冶金, 1997, 16(2):12 doi: 10.13355/j.cnki.sfyj.1997.02.005
Wang C H. Preliminary study on field test of underground crushing and copper leaching method. Hydrometall China, 1997, 16(2): 12 doi: 10.13355/j.cnki.sfyj.1997.02.005
|
[47] |
楊仕教, 廖大學. 七四五礦就地破碎浸出試驗研究. 礦業研究與開發, 1998, 18(6):7 doi: 10.13827/j.cnki.kyyk.1998.06.003
Yang S J, Liao D X. An experimental study on In stiu explosive fragmentation and leaching in NO. 745 mine. Min Res Dev, 1998, 18(6): 7 doi: 10.13827/j.cnki.kyyk.1998.06.003
|
[48] |
Ghorbani Y, Franzidis J P, Petersen J. Heap leaching technology—Current state, innovations, and future directions: A review. Miner Process Extr Metall Rev, 2016, 37(2): 73
|
[49] |
O'Gorman G, Michaelis H, Olson G J. Novel in situ metal and mineral extraction technology [R/OL]. OSTI. GOV (2004-09-22)[2022-04-10].https://www.osti.gov/biblio/835781
|
[50] |
Sinclair L, Thompson J. In situ leaching of copper: Challenges and future prospects. Hydrometallurgy, 2015, 157: 306 doi: 10.1016/j.hydromet.2015.08.022
|
[51] |
World Nuclear Association. Uranium mining overview [EB/OL]. World Nuclear Association (2022-06) [2022-04-10].https://world-nuclear.org/information-library/nuclear-fuel-cycle/mining-of-uranium/uranium-mining-overview.aspx
|
[52] |
吳愛祥, 王洪江, 楊保華, 等. 溶浸采礦技術的進展與展望. 采礦技術, 2006, 6(3):39 doi: 10.3969/j.issn.1671-2900.2006.03.009
Wu A X, Wang H J, Yang B H, et al. Progress and prospect of leaching mining technology. Min Technol, 2006, 6(3): 39 doi: 10.3969/j.issn.1671-2900.2006.03.009
|
[53] |
亢方超, 唐春安. 基于開挖的增強型地熱系統概述. 地學前緣, 2020, 27(1):185
Kang F C, Tang C N. Overview of enhanced geothermal system (EGS) based on excavation in China. Earth Sci Front, 2020, 27(1): 185
|
[54] |
Whetten J T, Dennis B R, Dreesen D S, et al. The US hot dry rock project. Geothermics, 1987, 16(4): 331 doi: 10.1016/0375-6505(87)90014-9
|
[55] |
地址裝備. 《中國地熱能發展報告(2018)》白皮書發布. 地質裝備, 2019, 20(2):3
Equipment for Geotechnical Engineering. The White Paper of China Geothermal Energy Development Report (2018) was released. Equip Geotech Eng, 2019, 20(2): 3
|
[56] |
毛翔, 國殿斌, 羅璐, 等. 世界干熱巖地熱資源開發進展與地質背景分析. 地質論評, 2019, 65(6):1462 doi: 10.16509/j.georeview.2019.06.013
Mao X, Guo D B, Luo L, et al. The global development process of hot dry rock (enhanced geothermal system) and its geological background. Geol Rev, 2019, 65(6): 1462 doi: 10.16509/j.georeview.2019.06.013
|
[57] |
王轉轉, 歐成華, 王紅印, 等. 國內地熱資源類型特征及其開發利用進展. 水利水電技術, 2019, 50(6):187 doi: 10.13928/j.cnki.wrahe.2019.06.026
Wang Z Z, Ou C H, Wang H Y, et al. The characteristics and development of geothermal resources in China. Water Resour Hydropower Eng, 2019, 50(6): 187 doi: 10.13928/j.cnki.wrahe.2019.06.026
|
[58] |
廖志杰, 萬天豐, 張振國. 增強型地熱系統: 潛力大、開發難. 地學前緣, 2015, 22(1):335
Liao Z J, Wan T F, Zhang Z G. The enhanced geothermal system(EGS): Huge capacity and difficult exploitation. Earth Sci Front, 2015, 22(1): 335
|
[59] |
李健, 武江元, 楊震, 等. 地熱發電技術及其關鍵影響因素綜述. 熱力發電, 2022, 51(3):1
Li J, Wu J Y, Yang Z, et al. Review of geothermal power generation technologies and key influencing factors. Therm Power Gener, 2022, 51(3): 1
|
[60] |
陳慶發, 蘇家紅. 協同開采及其技術體系. 中南大學學報(自然科學版), 2013, 44(2):732
Chen Q F, Su J H. Synergetic mining and its technology system. J Central South Univ Sci Technol, 2013, 44(2): 732
|
[61] |
張波, 薛攀源, 劉浪, 等. 深部充填礦井的礦床-地熱協同開采方法探索. 煤炭學報, 2021, 46(9):2824
Zhang B, Xue P Y, Liu L, et al. Exploration on the method of ore deposit-geothermal energy synergetic mining in deep backfill mines. J China Coal Soc, 2021, 46(9): 2824
|
[62] |
李燕燕, 多吉, 張成江, 等. 地熱與熱液型鈾礦成因聯系: 研究現狀及解決方法. 地質論評, 2020, 66(5):1361
Li Y Y, Dor J, Zhang C J, et al. Genetic relationship between geothermal energy and hydrothermal uranium deposits: Research progress and method. Geol Rev, 2020, 66(5): 1361
|
[63] |
Yin S H, Wang L M, Wu A X, et al. Research progress in enhanced bioleaching of copper sulfides under the intervention of microbial communities. Int J Miner Metall Mater, 2019, 26(11): 1337 doi: 10.1007/s12613-019-1826-5
|
[64] |
Chen L, He A, Zhao J L, et al. Pore-scale modeling of complex transport phenomena in porous media. Prog Energy Combust Sci, 2022, 88: 100968 doi: 10.1016/j.pecs.2021.100968
|
[65] |
蔡美峰, 譚文輝, 吳星輝, 等. 金屬礦山深部智能開采現狀及其發展策略. 中國有色金屬學報, 2021, 31(11):3409 doi: 10.11817/j.ysxb.1004.0609.2021-42115
Cai M F, Tan W H, Wu X H, et al. Current situation and development strategy of deep intelligent mining in metal mines. Chin J Nonferrous Met, 2021, 31(11): 3409 doi: 10.11817/j.ysxb.1004.0609.2021-42115
|
[66] |
王國法, 張德生. 煤炭智能化綜采技術創新實踐與發展展望. 中國礦業大學學報, 2018, 47(3):459 doi: 10.13247/j.cnki.jcumt.000851
Wang G F, Zhang D S. Innovation practice and development prospect of intelligent fully mechanized technology for coal mining. J China Univ Min Technol, 2018, 47(3): 459 doi: 10.13247/j.cnki.jcumt.000851
|
[67] |
蘇華, 萬小虎. 一種耐腐蝕耐高溫硬質合金及其制備方法: 中國專利, CN106544566B. 2017-03-29
Su H, Wan X H. A Corrosion-Resistant and High Temperature Resistant Cemented Carbide and Preparation Method Type: China Patent, CN106544566B. 2017-03-29
|