<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 10
Sep.  2022
Turn off MathJax
Article Contents
MA Feng, WANG Gui-ling, ZHU Xi, ZHANG Wei, LI Chu-tong, TANG Xian-chun, YU Ming-xiao, ZHAO Zhi-hong, YANG Rui-yue. Experimental study of the enhanced stimulation of a deep carbonate thermal reservoir in the Xiong'an New Area[J]. Chinese Journal of Engineering, 2022, 44(10): 1789-1798. doi: 10.13374/j.issn2095-9389.2022.04.08.008
Citation: MA Feng, WANG Gui-ling, ZHU Xi, ZHANG Wei, LI Chu-tong, TANG Xian-chun, YU Ming-xiao, ZHAO Zhi-hong, YANG Rui-yue. Experimental study of the enhanced stimulation of a deep carbonate thermal reservoir in the Xiong'an New Area[J]. Chinese Journal of Engineering, 2022, 44(10): 1789-1798. doi: 10.13374/j.issn2095-9389.2022.04.08.008

Experimental study of the enhanced stimulation of a deep carbonate thermal reservoir in the Xiong'an New Area

doi: 10.13374/j.issn2095-9389.2022.04.08.008
More Information
  • Corresponding author: E-mail: guilingw@163.com
  • Received Date: 2022-04-08
    Available Online: 2022-07-17
  • Publish Date: 2022-10-25
  • Geothermal energy, as a clean and renewable resource distributed worldwide, has received extensive focus in recent years. With the improvement in drilling and logging technology, the depth of geothermal exploration has gradually increased. Carbonate reservoirs are presently the main layer for geothermal development and use in China that have the characteristics of wide distribution, large reserves, and easy reinjection. The current use is limited to the strong karst development zone, approximately 200 m at the top of the reservoirs. Because of the low permeability and strong heterogeneity, the deep carbonate geothermal reservoirs cannot be commercially developed. This study aims to solve the key technical problems of efficiently developing deep carbonate geothermal reservoirs with extreme thickness. The target section was selected by analyzing comprehensive logging and fracture imaging logging data. An innovative simulation technology combining hydraulic jetting and acid fracturing is developed, which has the characteristics of fixed-point fracturing, effective sealing, strong penetration, and a large stimulation range. A production enhancement test was conducted for carbonate geothermal wells in the following order: comprehensive logging, imaging logging, casing cementing, perforation, pumping test, small pressure test, hydraulic injection acid fracturing, pumping test (after fracturing), and other construction processes. Comprehensive logging is an effective means to interpret the macroscopic pore and permeability properties of a reservoir and can be used to initially select the target geothermal reservoir. Fracture imaging logging can provide a more intuitive understanding of fracture development and distribution characteristics. The results show that the fracture density of geothermal well D22 does not decrease substantially with increasing depth, and the fracture width tends to decrease with depth clearly. The experimental geothermal well D22, which has the largest thickness of carbonate geothermal reservoir exposed in the Xiong'an New Area, was selected to perform a pilot field test of stimulation. The results show that the water inflow of the target section at 3024–3174 m increased from 4.72 m3·h?1 before stimulation to 44.10 m3·h?1 after stimulation, increasing by 8.3-fold. The unit water inflow increased from 0.024 m3·(h·m)?1 before stimulation to 0.745 m3·(h·m)?1 after stimulation, increasing by 30-fold. The reservoir permeability coefficient increased from 4.4×10?3 m·d?1 to 146.3×10?3 m·d?1. The wellhead water temperature increased from 60.0 °C before stimulation to 66.5 °C after stimulation. Therefore, the development potential of deep and thick carbonate geothermal reservoirs can be substantially improved through the developed stimulation. This research can provide technical support for the large-scale development of geothermal resources in China.

     

  • loading
  • [1]
    龐忠和, 龐菊梅, 孔彥龍, 等. 大型巖溶熱儲識別方法與規模化可持續開采技術. 科技促進發展, 2020, 16(Suppl 1): 299

    Pang Z H, Pang J M, Kong Y L, et al. Large-scale Karst thermal storage identification method and large-scale sustainable mining technology. Sci Technol Dev, 2020, 16(Suppl 1): 299
    [2]
    馬峰, 王貴玲, 張薇, 等. 雄安新區容城地熱田熱儲空間結構及資源潛力. 地質學報, 2020, 94(7):1981 doi: 10.3969/j.issn.0001-5717.2020.07.007

    Ma F, Wang G L, Zhang W, et al. Structure of geothermal reservoirs and resource potential in the Rongcheng geothermal field in Xiong’an New area. Acta Geol Sin, 2020, 94(7): 1981 doi: 10.3969/j.issn.0001-5717.2020.07.007
    [3]
    吳愛民, 馬峰, 王貴玲, 等. 雄安新區深部巖溶熱儲探測與高產能地熱井參數研究. 地球學報, 2018, 39(5):523 doi: 10.3975/cagsb.2018.071104

    Wu A M, Ma F, Wang G L, et al. A study of deep-seated Karst geothermal reservoir exploration and huge capacity geothermal well parameters in Xiong’an new area. Acta Geosci Sin, 2018, 39(5): 523 doi: 10.3975/cagsb.2018.071104
    [4]
    王貴玲, 高俊, 張保建, 等. 雄安新區高陽低凸起區霧迷山組熱儲特征與高產能地熱井參數研究. 地質學報, 2020, 94(7):1970 doi: 10.3969/j.issn.0001-5717.2020.07.006

    Wang G L, Gao J, Zhang B J, et al. Study on the thermal storage characteristics of the Wumishan Formation and huge capacity geothermal well parameters in the Gaoyang low uplift area of Xiong’an New Area. Acta Geol Sin, 2020, 94(7): 1970 doi: 10.3969/j.issn.0001-5717.2020.07.006
    [5]
    馬峰, 王貴玲, 魏帥超, 等. 2018年地熱勘探開發熱點回眸. 科技導報, 2019, 37(1):134

    Ma F, Wang G L, Wei S C, et al. Summary of hot research topics in geothermal exploitation in 2018. Sci Technol Rev, 2019, 37(1): 134
    [6]
    唐帥, 朱維耀, 張金川. 中牟區塊過渡相頁巖氣藏產能分析及壓裂參數優選. 工程科學學報, 2020, 42(12):1573

    Tang S, Zhu W Y, Zhang J C. Production analysis and fracturing parameter optimization of shale gas from Zhongmou Block in southern North China Basin. Chin J Eng, 2020, 42(12): 1573
    [7]
    朱維耀, 張啟濤, 岳明, 等. 裂縫網絡支撐劑非均勻分布對開采動態規律的影. 工程科學學報, 2020, 42(10):1318

    Zhu W Y, Zhang Q T, Y M, et al. Effect of uneven distribution of proppant in fracture network on exploitation dynamic characteristics. Chin J Eng, 2020, 42(10): 1318
    [8]
    Portier S, Vuataz F D, Nami P, et al. Chemical stimulation techniques for geothermal wells: Experiments on the three-well EGS system at Soultz-sous-Forêts, France. Geothermics, 2009, 38(4): 349 doi: 10.1016/j.geothermics.2009.07.001
    [9]
    ásmundsson R, Pezard P, Sanjuan B, et al. High temperature instruments and methods developed for supercritical geothermal reservoir characterisation and exploitation—The HiTI project. Geothermics, 2014, 49: 90 doi: 10.1016/j.geothermics.2013.07.008
    [10]
    Elders W A, Frieleifsson G ó. The science program of the Iceland deep drilling project (IDDP): A study of supercritical geothermal resources // Proceedings World Geothermal Congress. Bali Indonesia, 2010: 25
    [11]
    Frank E D, Sullivan J L, Wang M Q. Life cycle analysis of geothermal power generation with supercritical carbon dioxide. Environ Res Lett, 2012, 7(3): 034030 doi: 10.1088/1748-9326/7/3/034030
    [12]
    Brown D W. A hot dry rock geothermal energy concept utilizing supercritical CO2 instead of water // Twenty-fifth Workshop on Geothermal Reservoir Engineering. Stanford University, 2000: 233
    [13]
    程萬, 金衍, 陳勉, 等. 三維空間中水力裂縫穿透天然裂縫的判別準則. 石油勘探與開發, 2014, 41(3):336 doi: 10.11698/PED.2014.03.09

    Cheng W, Jin Y, Chen M, et al. A criterion for identifying hydraulic fractures crossing natural fractures in 3D space. Pet Explor Dev, 2014, 41(3): 336 doi: 10.11698/PED.2014.03.09
    [14]
    陳勉, 周健, 金衍, 等. 隨機裂縫性儲層壓裂特征實驗研究. 石油學報, 2008, 29(3):431 doi: 10.3321/j.issn:0253-2697.2008.03.023

    Chen M, Zhou J, Jin Y, et al. Experimental study on fracturing features in naturally fractured reservoir. Acta Petrolei Sin, 2008, 29(3): 431 doi: 10.3321/j.issn:0253-2697.2008.03.023
    [15]
    Gu H R, Weng X W, Lund J, et al. Hydraulic fracture crossing natural fracture at nonorthogonal angles, A criterion, its validation. SPE Prod Oper, 2012, 27(1): 139984
    [16]
    李文, 孔祥軍, 袁利娟, 等. 北京通州地區地熱井酸化壓裂增灌試驗研究. 城市地質, 2019, 14(4):43 doi: 10.3969/j.issn.1007-1903.2019.04.008

    Li W, Kong X J, Yuan L J, et al. Study on geothermal acid fracturing increasing reinjection test in Tongzhou area, Beijing. Urban Geol, 2019, 14(4): 43 doi: 10.3969/j.issn.1007-1903.2019.04.008
    [17]
    楊淼, 林天懿, 劉慶, 等. 北京某典型地區地熱井酸化壓裂增產技術研究. 城市地質, 2018, 13(4):14 doi: 10.3969/j.issn.1007-1903.2018.04.003

    Yang M, Lin T Y, Liu Q, et al. The study on geothermal acid fracturing stimulation technique in a typical area in Beijing. Urban Geol, 2018, 13(4): 14 doi: 10.3969/j.issn.1007-1903.2018.04.003
    [18]
    劉明亮, 莊亞芹, 周超, 等. 化學刺激技術在增強型地熱系統中的應用: 理論、實踐與展望. 地球科學與環境學報, 2016, 38(2):267 doi: 10.3969/j.issn.1672-6561.2016.02.014

    Liu M L, Zhuang Y Q, Zhou C, et al. Application of chemical stimulation technology in enhanced geothermal system: Theory, practice and expectation. J Earth Sci Environ, 2016, 38(2): 267 doi: 10.3969/j.issn.1672-6561.2016.02.014
    [19]
    柯柏林, 趙連海, 溫澤濤. 射孔和酸化壓裂技術在地熱井洗井中的應用. 探礦工程(巖土鉆掘工程), 2007, 34(8):17

    Ke, B L, Zhao L H, Wen Z T. Application of perforation and acidizing fracturing technology in geothermal well washing. Explor Eng Rock Soil Drill Tunneling, 2007, 34(8): 17
    [20]
    翟海珍, 蘇正, 吳能友. 蘇爾士增強型地熱系統的開發經驗及對我國地熱開發的啟示. 新能源進展, 2014, 2(4):286 doi: 10.3969/j.issn.2095-560X.2014.04.008

    Zhai H Z, Su Z, Wu N Y. Development experiences of the soultz enhanced geothermal systems and inspirations for geothermal development of China. Adv New Renewable Energy, 2014, 2(4): 286 doi: 10.3969/j.issn.2095-560X.2014.04.008
    [21]
    徐云鵬. 酸化壓裂工藝在碳酸鹽巖層地熱開發中的應用[學位論文]. 北京: 中國地質大學(北京), 2014

    Xu Y P. Acid Fracturing Technology and Its Application in Geothermal Development of Carbonate Rocks [Dissertation]. Beijing: China University of Geosciences (Beijing), 2014
    [22]
    徐云鵬. 酸化增產工藝在碳酸鹽巖層地熱開發中的應用. 探礦工程(巖土鉆掘工程), 2015, 42(11):31

    Xu Y P. Application of acidizing stimulation technology for geothermal development in carbonate rocks. Explor Eng Rock Soil Drill Tunneling, 2015, 42(11): 31
    [23]
    呂殿臣. 酸化壓裂技術在地熱井增產中的應用. 中國石油和化工標準與質量, 2013, 33(22):156 doi: 10.3969/j.issn.1673-4076.2013.22.156

    Lv D C. Application of acidizing technology in geothermal well stimulation. China Pet Chem Stand Qual, 2013, 33(22): 156 doi: 10.3969/j.issn.1673-4076.2013.22.156
    [24]
    王連成, 李明朗, 程萬慶, 等. 酸化壓裂方法在碳酸鹽巖熱儲層中的應用. 水文地質工程地質, 2010, 37(5):128 doi: 10.3969/j.issn.1000-3665.2010.05.024

    Wang L C, Li M L, Cheng W Q, et al. Application of acidifying & fracturing technology to carbonate rock reservoir. Hydrogeol Eng Geol, 2010, 37(5): 128 doi: 10.3969/j.issn.1000-3665.2010.05.024
    [25]
    王平, 宗振海, 李振杰, 等. 酸化液壓技術在地熱增產中的應用分析. 探礦工程(巖土鉆掘工程), 2011, 38(10):30

    Wang P, Zong Z H, Li Z J, et al. Application analysis on acidification and crushing technology for increasing geothermal yield. Explor Eng Rock Soil Drill Tunneling, 2011, 38(10): 30
    [26]
    李硯智, 田京振. 酸化洗井在河北牛駝鎮地熱田兩口井中的應用. 探礦工程(巖土鉆掘工程), 2009, 36(6):16

    Li Y Z, Tian J Z. Application of acid well Flushing in 2 wells of Niutuo geothermal field in Hebei. Explor Eng Rock Soil Drill Tunneling, 2009, 36(6): 16
    [27]
    林天懿, 柯柏林, 楊淼, 等. 碳酸鹽巖熱儲酸化壓裂增產機理研究及應用. 城市地質, 2018, 13(3):21 doi: 10.3969/j.issn.1007-1903.2018.03.003

    Lin T Y, Ke B L, Yang M, et al. The acid-fracturing stimulation mechanism and application in hydrothermal-carbonate geothermal reservoir. Urban Geol, 2018, 13(3): 21 doi: 10.3969/j.issn.1007-1903.2018.03.003
    [28]
    姬永紅. 酸化壓裂技術在魯西南碳酸鹽巖地熱井中的應用. 勘察科學技術, 2017(4):62 doi: 10.3969/j.issn.1001-3946.2017.04.016

    Ji Y H. Application of acid fracturing technology in geothermal well of carbonate rock in southwest of Shandong Province. Site Invest Sci Technol, 2017(4): 62 doi: 10.3969/j.issn.1001-3946.2017.04.016
    [29]
    李根生, 黃中偉, 張德斌, 等. 高壓水射流與化學劑復合解堵工藝的機理及應用. 石油學報, 2005, 26(1):96 doi: 10.3321/j.issn:0253-2697.2005.01.020

    Li G S, Huang Z W, Zhang D B, et al. Block-removing technus using high pressure water jets combined with acidization. Acta Petrolei Sin, 2005, 26(1): 96 doi: 10.3321/j.issn:0253-2697.2005.01.020
    [30]
    柯柏林, 林天懿, 劉慶. 碳酸鹽巖水熱型地熱系統酸化壓裂增產關鍵技術研究與應用. 北京: 中國大地出版社, 2019

    Ke B L, Lin T Y, Liu Q. Research and Application of Key Technologies for Carbonated Hydrothermal Geothermal System Acid-fracturing to Increase Production. Beijing: China Land Press, 2019
    [31]
    田守嶒, 李根生, 黃中偉, 等. 水力噴射壓裂機理與技術研究進展. 石油鉆采工藝, 2008, 30(1):58 doi: 10.3969/j.issn.1000-7393.2008.01.016

    Tian S Z, Li G S, Huang Z W, et al. Research on hydrajet fracturing mechanisms and technologies. Oil Drill Prod Technol, 2008, 30(1): 58 doi: 10.3969/j.issn.1000-7393.2008.01.016
    [32]
    李根生, 黃中偉, 田守嶒, 等. 水力噴射壓裂理論與應用. 北京: 科學出版社, 2011

    Li G S, Huang Z W, Tian S Z, et al. Theory and Application of Hydra-jet Fracturing. Beijing: Science Press, 2011
    [33]
    黃中偉, 李根生, 汪永章, 等. 水力噴射壓裂技術在3層套管井中的應用. 石油鉆采工藝, 2012, 34(5):122 doi: 10.3969/j.issn.1000-7393.2012.05.032

    Huang Z W, Li G S, Wang Y Z, et al. Hydra-jet fracturing applied in a well with three-layer casings. Oil Drill Prod Technol, 2012, 34(5): 122 doi: 10.3969/j.issn.1000-7393.2012.05.032
    [34]
    黃中偉, 李根生, 田守嶒, 等. 水力噴射多級壓裂井下工具磨損規律分析. 重慶大學學報, 2014, 37(5):77 doi: 10.11835/j.issn.1000-582X.2014.05.011

    Huang Z W, Li G S, Tian S Z, et al. Wear investigation of downhole tools applied to hydra-jet multistage fracturing. J Chongqing Univ, 2014, 37(5): 77 doi: 10.11835/j.issn.1000-582X.2014.05.011
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article views (534) PDF downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频