Citation: | KANG Fang-chao, TANG Chun-an, LI Ying-chun, LI Tian-jiao, MEN Jin-long. Challenges and opportunities of enhanced geothermal systems: A review[J]. Chinese Journal of Engineering, 2022, 44(10): 1767-1777. doi: 10.13374/j.issn2095-9389.2022.04.07.004 |
[1] |
李德威, 王焰新. 干熱巖地熱能研究與開發的若干重大問題. 地球科學, 2015, 40(11):1858
Li D W, Wang Y X. Major issues of research and development of hot dry rock geothermal energy. Earth Sci, 2015, 40(11): 1858
|
[2] |
Zhu J L, Hu K Y, Lu X L, et al. A review of geothermal energy resources, development, and applications in China: Current status and prospects. Energy, 2015, 93: 466 doi: 10.1016/j.energy.2015.08.098
|
[3] |
Rybach L. Geothermal energy: Sustainability and the environment. Geothermics, 2003, 32(4-6): 463 doi: 10.1016/S0375-6505(03)00057-9
|
[4] |
胡劍, 蘇正, 吳能友, 等. 增強型地熱系統熱流耦合水巖溫度場分析. 地球物理學進展, 2014, 29(3):1391 doi: 10.6038/pg20140354
Hu J, Su Z, Wu N Y, et al. Analysis on temperature fields of thermal-hydraulic coupled fluid and rock in Enhanced Geothermal System. Prog Geophys, 2014, 29(3): 1391 doi: 10.6038/pg20140354
|
[5] |
廖志杰, 萬天豐, 張振國. 增強型地熱系統: 潛力大、開發難. 地學前緣, 2015, 22(1):335
Liao Z J, Wan T F, Zhang Z G. The enhanced geothermal system (EGS): Huge capacity and difficult exploitation. Earth Sci Front, 2015, 22(1): 335
|
[6] |
許天福, 胡子旭, 李勝濤, 等. 增強型地熱系統: 國際研究進展與我國研究現狀. 地質學報, 2018, 92(9):1936 doi: 10.3969/j.issn.0001-5717.2018.09.012
Xu T F, Hu Z X, Li S T, et al. Enhanced geothermal system: International progresses and research status of China. Acta Geol Sin, 2018, 92(9): 1936 doi: 10.3969/j.issn.0001-5717.2018.09.012
|
[7] |
Lund J W, Boyd T L. Direct utilization of geothermal energy 2015 worldwide review. Geothermics, 2016, 60: 66 doi: 10.1016/j.geothermics.2015.11.004
|
[8] |
Lund J W, Freeston D H, Boyd T L. Direct utilization of geothermal energy 2010 worldwide review. Geothermics, 2011, 40(3): 159 doi: 10.1016/j.geothermics.2011.07.004
|
[9] |
Lund J W, Toth A N. Direct utilization of geothermal energy 2020 worldwide review. Geothermics, 2021, 90: 101915 doi: 10.1016/j.geothermics.2020.101915
|
[10] |
王貴玲, 劉彥廣, 朱喜, 等. 中國地熱資源現狀及發展趨勢. 地學前緣, 2020, 27(1):1 doi: 10.13745/j.esf.2020.1.1
Wang G L, Liu Y G, Zhu X, et al. The status and development trend of geothermal resources in China. Earth Sci Front, 2020, 27(1): 1 doi: 10.13745/j.esf.2020.1.1
|
[11] |
王貴玲, 張薇, 梁繼運, 等. 中國地熱資源潛力評價. 地球學報, 2017, 38(4):449 doi: 10.3975/cagsb.2017.04.02
Wang G L, Zhang W, Liang J Y, et al. Evaluation of geothermal resources potential in China. Acta Geosci Sin, 2017, 38(4): 449 doi: 10.3975/cagsb.2017.04.02
|
[12] |
汪集旸, 胡圣標, 龐忠和, 等. 中國大陸干熱巖地熱資源潛力評估. 科技導報, 2012, 30(32):25 doi: 10.3981/j.issn.1000-7857.2012.32.002
Wang J Y, Hu S B, Pang Z H, et al. Estimate of geothermal resources potential for hot dry rock in the continental area of China. Sci Technol Rev, 2012, 30(32): 25 doi: 10.3981/j.issn.1000-7857.2012.32.002
|
[13] |
Kruger P, Otte C. Geothermal Energy: Resources, Production, Stimulation. Stanford: Stanford University Press, 1973
|
[14] |
Bertani R. Geothermal power generation in the world 2010—2014 update report. Geothermics, 2016, 60: 31 doi: 10.1016/j.geothermics.2015.11.003
|
[15] |
Whetten J T, Dennis B R, Dreesen D S, et al. The US hot dry rock project. Geothermics, 1987, 16(4): 331 doi: 10.1016/0375-6505(87)90014-9
|
[16] |
Breede K, Dzebisashvili K, Liu X L, et al. A systematic review of enhanced (or engineered) geothermal systems: Past, present and future. Geotherm Energy, 2013, 1(1): 1 doi: 10.1186/2195-9706-1-1
|
[17] |
McClure M W, Horne R N. An investigation of stimulation mechanisms in Enhanced Geothermal Systems. Int J Rock Mech Min Sci, 2014, 72: 242 doi: 10.1016/j.ijrmms.2014.07.011
|
[18] |
Olasolo P, Juárez M C, Morales M P, et al. Enhanced geothermal systems (EGS): A review. Renew Sustain Energy Rev, 2016, 56: 133 doi: 10.1016/j.rser.2015.11.031
|
[19] |
Brown D W, Duchane D V, Heiken G, et al. Mining the Earth's Heat: Hot Dry Rock Geothermal Energy. Berlin: Springer Science & Business Media, 2012
|
[20] |
Zhang C, Jiang G Z, Jia X F, et al. Parametric study of the production performance of an enhanced geothermal system: A case study at the Qiabuqia geothermal area, northeast Tibetan plateau. Renew Energy, 2019, 132: 959 doi: 10.1016/j.renene.2018.08.061
|
[21] |
Kim K I, Min K B, Kim K Y, et al. Protocol for induced microseismicity in the first enhanced geothermal systems project in Pohang, Korea. Renew Sustain Energy Rev, 2018, 91: 1182 doi: 10.1016/j.rser.2018.04.062
|
[22] |
Kappelmeyer O, Jung R. HDR experiments at falkenberg/Bavaria. Geothermics, 1987, 16(4): 375 doi: 10.1016/0375-6505(87)90017-4
|
[23] |
Nemat-Nasser S, Abé H, Hirakawa S. Hydraulic Fracturing and Geothermal Energy. Dordrecht: Springer Netherlands, 1983
|
[24] |
Ito H. Inferred role of natural fractures, veins, and breccias in development of the artificial geothermal reservoir at the Ogachi Hot Dry Rock site, Japan. J Geophys Res, 2003, 108(B9): 2426
|
[25] |
Avouac J P, Vrain M, Kim T, et al. A convolution model for earthquake forecasting derived from seismicity recorded during the ST1 geothermal project on otaniemi campus, Finland // Proceedings World Geothermal Congress. Reykjavik, 2020: 1
|
[26] |
Frieleifsson G ó, Elders W A, Bignall G. A plan for a 5 km-deep borehole at Reykjanes, Iceland, into the root zone of a black smoker on land. Sci Dril, 2013, 16: 73 doi: 10.5194/sd-16-73-2013
|
[27] |
Sigurjónsson H ?, Cook D, Davíesdóttir B, et al. A life-cycle analysis of deep enhanced geothermal systems: The case studies of Reykjanes, Iceland and Vendenheim, France. Renew Energy, 2021, 177: 1076 doi: 10.1016/j.renene.2021.06.013
|
[28] |
Richards H G, Parker R H, Green A S P, et al. The performance and characteristics of the experimental hot dry rock geothermal reservoir at Rosemanowes, Cornwall (1985—1988). Geothermics, 1994, 23(2): 73 doi: 10.1016/0375-6505(94)90032-9
|
[29] |
Seibt P, Hoth P. The neustadt-glewe geothermal station: Form surveys to active operation. Therm Eng, 2004, 51(6): 494
|
[30] |
Bargar K E, Keith T E C. Hydrothermal Mineralogy of Core from Geothermal Drill Holes at Newberry Volcano, Oregon. Washington, US Government Printing Office, 1999.
|
[31] |
Mraz E, Moeck I, Bissmann S, et al. Multiphase fossil normal faults as geothermal exploration targets in the Western Bavarian Molasse Basin: Case study Mauerstetten. Z Dt Ges Geowiss, 2018, 169(3): 389
|
[32] |
龐忠和, 羅霽, 程遠志, 等. 中國深層地熱能開采的地質條件評價. 地學前緣, 2020, 27(1):134 doi: 10.13745/j.esf.2020.1.15
Pang Z H, Luo J, Cheng Y Z, et al. Evaluation of geological conditions for the development of deep geothermal energy in China. Earth Sci Front, 2020, 27(1): 134 doi: 10.13745/j.esf.2020.1.15
|
[33] |
張森琦, 文冬光, 許天福, 等. 美國干熱巖“地熱能前沿瞭望臺研究計劃”與中美典型EGS場地勘查現狀對比. 地學前緣, 2019, 26(2):321
Zhang S Q, Wen D G, Xu T F, et al. The US Frontier Observatory For Research in Geothermal Energy project and comparison of typical EGS site exploration status in China and US. Earth Sci Front, 2019, 26(2): 321
|
[34] |
Shao S S, Ranjith P G, Wasantha P L P, et al. Experimental and numerical studies on the mechanical behaviour of Australian Strathbogie granite at high temperatures: An application to geothermal energy. Geothermics, 2015, 54: 96 doi: 10.1016/j.geothermics.2014.11.005
|
[35] |
Kang F C, Li Y C, Tang C A. Grain size heterogeneity controls strengthening to weakening of granite over high-temperature treatment. Int J Rock Mech Min Sci, 2021, 145: 104848 doi: 10.1016/j.ijrmms.2021.104848
|
[36] |
Zhang W, Guo T K, Qu Z Q, et al. Research of fracture initiation and propagation in HDR fracturing under thermal stress from meso-damage perspective. Energy, 2019, 178: 508 doi: 10.1016/j.energy.2019.04.131
|
[37] |
Tomac I, Sauter M. A review on challenges in the assessment of geomechanical rock performance for deep geothermal reservoir development. Renew Sustain Energy Rev, 2018, 82: 3972 doi: 10.1016/j.rser.2017.10.076
|
[38] |
Sanyal S K, Morrow J W, Butler S J, et al. Is EGS commercially feasible? Trans Geotherm Resour Counc, 2007, 31: 313
|
[39] |
Schill E, Genter A, Cuenot N, et al. Hydraulic performance history at the Soultz EGS reservoirs from stimulation and long-term circulation tests. Geothermics, 2017, 70: 110 doi: 10.1016/j.geothermics.2017.06.003
|
[40] |
亢方超, 唐春安. 基于開挖的增強型地熱系統概述. 地學前緣, 2020, 27(1):185 doi: 10.13745/j.esf.2020.1.20
Kang F C, Tang C A. Overview of enhanced geothermal system (EGS) based on excavation in China. Earth Sci Front, 2020, 27(1): 185 doi: 10.13745/j.esf.2020.1.20
|
[41] |
Sasaki S. Characteristics of microseismic events induced during hydraulic fracturing experiments at the Hijiori hot dry rock geothermal energy site, Yamagata, Japan. Tectonophysics, 1998, 289(1-3): 171 doi: 10.1016/S0040-1951(97)00314-4
|
[42] |
Dyer B C, Schanz U, Ladner F, et al. Microseismic imaging of a geothermal reservoir stimulation. Lead Edge, 2008, 27(7): 856 doi: 10.1190/1.2954024
|
[43] |
Kim K H, Ree J H, Kim Y, et al. Assessing whether the 2017 Mw 5. 4 Pohang earthquake in South Korea was an induced event. Science, 2018, 360(6392): 1007
|
[44] |
Grigoli F, Cesca S, Rinaldi A P, et al. The November 2017 Mw 5. 5 Pohang earthquake:A possible case of induced seismicity in South Korea. Science, 2018, 360(6392): 1003
|
[45] |
毛翔, 國殿斌, 羅璐, 等. 世界干熱巖地熱資源開發進展與地質背景分析. 地質論評, 2019, 65(6):1462 doi: 10.16509/j.georeview.2019.06.013
Mao X, Guo D B, Luo L, et al. The global development process of hot dry rock (enhanced geothermal system) and its geological background. Geol Rev, 2019, 65(6): 1462 doi: 10.16509/j.georeview.2019.06.013
|
[46] |
ásmundsson R, Pezard P, Sanjuan B, et al. High temperature instruments and methods developed for supercritical geothermal reservoir characterisation and exploitation—The HiTI project. Geothermics, 2014, 49: 90 doi: 10.1016/j.geothermics.2013.07.008
|
[47] |
Moore J, McLennan J, Allis R, et al. The Utah frontier observatory for geothermal research (FORGE): results of recent drilling and geoscientific surveys // Geothermal Resources Council 42nd Annual Meeting-Geothermal Energy. Reno, 2018(42): 1034044
|
[48] |
Xing P J, McLennan J, Moore J. In-situ stress measurements at the Utah frontier observatory for research in geothermal energy (FORGE) site. Energies, 2020, 13(21): 5842 doi: 10.3390/en13215842
|
[49] |
Zhao J, Tang C A, Wang S J. Excavation based enhanced geothermal system (EGS-E): Introduction to a new concept. Geomech Geophys Geo-energ Geo-resour. 2020, 6(1): 6
|
[50] |
唐春安, 趙堅, 王思敬. 基于開挖技術的增強型地熱系統EGS-E概念模型. 地熱能, 2019(1):17
Tang C A, Zhao J, Wang S J. An EGS-E conceptual model of enhanced geothermal system based on excavation technology. Geotherm Energy, 2019(1): 17
|
[51] |
蔡美峰, 多吉, 陳湘生, 等. 深部礦產和地熱資源共采戰略研究. 中國工程科學, 2021, 23(6):43
Cai M F, Dor J, Chen X S, et al. Development strategy for Co-mining of the deep mineral and geothermal resources. Strateg Study CAE, 2021, 23(6): 43
|
[52] |
蔡美峰, 薛鼎龍, 任奮華. 金屬礦深部開采現狀與發展戰略. 工程科學學報, 2019, 41(4):417
Cai M F, Xue D L, Ren F H. Current status and development strategy of metal mines. Chin J Eng, 2019, 41(4): 417
|
[53] |
郭奇峰, 蔡美峰, 吳星輝, 等. 面向2035年的金屬礦深部多場智能開采發展戰略. 工程科學學報, 2022, 44(4):476
Guo Q F, Cai M F, Wu X H, et al. Technological strategies for intelligent mining subject to multifield couplings in deep metal mines toward 2035. Chin J Eng, 2022, 44(4): 476
|
[54] |
宋健, 唐春安, 亢方超. 深部礦產與地熱資源協同開采模式. 金屬礦山, 2020(5):124
Song J, Tang C A, Kang F C. Synergetic mining mode of deep mineral and geothermal resources. Met Mine, 2020(5): 124
|