Citation: | DU Chen-yang, LIU Chang, ZHANG Ming, YANG Jin-xiao, WANG Xu-dong. Concentration effects of formic acid on the corrosion behavior of 316L stainless steel from passivation to activation[J]. Chinese Journal of Engineering, 2022, 44(8): 1379-1385. doi: 10.13374/j.issn2095-9389.2022.03.24.005 |
[1] |
周謨銀, 方肖露. 金屬磷化技術. 北京: 中國標準出版社, 1999
Zhou M Y, Fang X L. Metal Phosphating Technology. Beijing: China Standard Press, 1999
|
[2] |
Quraishi M A, Chauhan D S, Ansari F A. Development of environmentally benign corrosion inhibitors for organic acid environments for oil-gas industry. J Mol Liq, 2021, 329: 115514 doi: 10.1016/j.molliq.2021.115514
|
[3] |
劉銳, 張煜輝, 李龍, 等. 高溫高壓下20鋼和13Cr鋼在不同含量甲酸-CO2環境中的腐蝕行為. 機械工程材料, 2017, 41(9):42 doi: 10.11973/jxgccl201709007
Liu R, Zhang Y H, Li L, et al. Corrosion behavior of 20 steel and 13Cr steel in different content formic acid-CO2 environment under high pressure and high temperature. Mater Mech Eng, 2017, 41(9): 42 doi: 10.11973/jxgccl201709007
|
[4] |
李治, 羅長斌, 于曉明, 等. 碳鋼在高溫高壓條件甲酸環境中的腐蝕行為. 腐蝕與防護, 2015, 36(6):540 doi: 10.11973/fsyfh-201506007
Li Z, Luo C B, Yu X M, et al. Corrosion bchavior of carbon steel in high temperature and high pressure formic acid enviornment. Corros Prot, 2015, 36(6): 540 doi: 10.11973/fsyfh-201506007
|
[5] |
趙國仙, 杜航波, 錢炯, 等. 2507超級雙相不銹鋼在甲酸鹽完井液中的腐蝕行為. 腐蝕與防護, 2021, 42(10):54 doi: 10.11973/fsyfh-202110011
Zhao G X, Du H B, Qian J, et al. Corrosion behavior of 2507 super duplex stainless in potassium formate completion fluid. Corros Prot, 2021, 42(10): 54 doi: 10.11973/fsyfh-202110011
|
[6] |
Zhu L Y, Cui Z Y, Cui H Z, et al. The effect of applied stress on the crevice corrosion of 304 stainless steel in 3.5wt% NaCl solution. Corros Sci, 2022, 196: 110039
|
[7] |
Sekine I, Chinda A. Comparison of the corrosion behavior of pure Fe, Ni, Cr, and type 304 stainless steel in formic acid solution. Corrosion, 1984, 40(3): 95 doi: 10.5006/1.3593929
|
[8] |
Badea G E, Cojocaru A, Badea T. Corrosion and passivation behaviour of the 18Cr-10Ni stainless steel in 1N solutions of formic, acetic, oxalic and citric acid. Revista De Chimie, 2004, 55(12): 1029
|
[9] |
Otero E, Pardo A, Utrilla M V, et al. The corrosion behaviour of AISI 304L AND 316L stainless steels prepared by powder metallurgy in the presence of organic acids. Corros Sci, 1997, 39(3): 453 doi: 10.1016/S0010-938X(97)86097-0
|
[10] |
Al-Bikri A K, Kadhim F, Al-Sultani F, et al. Corrosion behavior of stainless steel in formic acid // 3rd International Conference on Mechanical, Automobile and Robotics Engineering (ICMAR'2014). Singapore, 2014: 13
|
[11] |
Sekine I, Chinda A. Corrosion behavior of stainless steel 304 in formic acid solution. Boshoku Gijutsu, 1982, 31(5): 313
|
[12] |
Badea G E, Ionita D, Cret P. Corrosion and passivation of the 304 stainless steel in formic acid solutions. Mater Corros, 2014, 65(11): 1103 doi: 10.1002/maco.201307491
|
[13] |
ASTM. G31-72 Standard Practice for Laboratory Immersion Corrosion Testing of Metals. West Conshohocken: American Society for Testing Materials, 2004
|
[14] |
中華人民共和國冶金工業部. GB 10124-88 金屬材料實驗室均勻腐蝕全浸試驗方法. 北京: 中國標準出版社, 1988
Ministry of Metallurgical Industry of the People’s Republic of China. GB 10124-88 Metals Metarials-Uniform Corrosion-Methods of Laboratory Immersion Testing. Beijing: Standards Press of China, 1988
|
[15] |
International Organization for Standardization. ISO 8407: 2009 Corrosion of Metals and Alloys — Removal of Corrosion Products from Corrosion Test Specimens. Switzerland: International Organization for Standardization, 2009
|
[16] |
Liao J J, Zhang W, Zhang J S, et al. Mechanisms investigation of cathodic-anodic coupling reaction of Zr-H2O at 360?℃ by long-term in situ electrochemical polarization analyses. Corros Sci, 2021, 190: 109635 doi: 10.1016/j.corsci.2021.109635
|
[17] |
國家質量技術監督局. GB 17899—1999 不銹鋼點蝕電位測量方法. 北京: 中國標準出版社, 1999
State Bureau of Quality and Technical Supervision. GB/T 17899—1999 Method of Pitting Potential Measurment for Stainless Steel. Beijing: Standards Press of China, 1999
|
[18] |
Bellezze T, Giuliani G, Roventi G. Study of stainless steels corrosion in a strong acid mixture. Part 1: Cyclic potentiodynamic polarization curves examined by means of an analytical method. Corros Sci, 2018, 130: 113
|
[19] |
Pal S, Bhadauria S S, Kumar P. Electrochemical corrosion behavior of type F304 stainless steel in different temperatures. J Bio Tribo Corros, 2021, 7(2): 1
|
[20] |
Chen L J, Liu W, Dong B J, et al. Insight into electrochemical passivation behavior and surface chemistry of 2205 duplex stainless steel: Effect of tensile elastic stress. Corros Sci, 2021, 193: 109903 doi: 10.1016/j.corsci.2021.109903
|
[21] |
Zhu M, Zhang Q, Yuan Y F, et al. Study on the correlation between passive film and AC corrosion behavior of 2507 super duplex stainless steel in simulated marine environment. J Electroanal Chem, 2020, 864: 114072 doi: 10.1016/j.jelechem.2020.114072
|
[22] |
Lynch B, Neupane S, Wiame F, et al. An XPS and ToF-SIMS study of the passive film formed on a model FeCrNiMo stainless steel surface in aqueous media after thermal pre-oxidation at ultra-low oxygen pressure. Appl Surf Sci, 2021, 554: 149435 doi: 10.1016/j.apsusc.2021.149435
|
[23] |
Sekine I, Senoo K. The corrosion behaviour of SS 41 steel in formic and acetic acids. Corros Sci, 1984, 24(5): 439 doi: 10.1016/0010-938X(84)90069-6
|
[24] |
Tang J L, Zhao X H, Zuo Y, et al. Electrodeposited Pd-Ni-Mo film as a cathode material for hydrogen evolution reaction. Electrochimica Acta, 2015, 174: 1041 doi: 10.1016/j.electacta.2015.06.134
|
[25] |
Yang F, Jiang L X, Yu X Y, et al. Hydrogen evolution behavior of aluminum cathode in comparison with stainless steel for electrowinning of manganese in sulfate solution. Hydrometallurgy, 2018, 179: 245 doi: 10.1016/j.hydromet.2018.06.015
|
[26] |
Tan Y, Wei Y K, Liang K X, et al. Facile in situ deposition of Pt nanoparticles on nano-pore stainless steel composite electrodes for high active hydrogen evolution reaction. Int J Hydrog Energy, 2021, 46(52): 26340 doi: 10.1016/j.ijhydene.2021.05.130
|