<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
LI Cui-ping, HUANG Zhen-hua, RUAN Zhu-en, WANG Shao-yong. Analysis of the research progress in the mechanism of particle mechanics action on the rheological behavior of paste in metal mines[J]. Chinese Journal of Engineering, 2022, 44(8): 1293-1305. doi: 10.13374/j.issn2095-9389.2022.03.24.004
Citation: LI Cui-ping, HUANG Zhen-hua, RUAN Zhu-en, WANG Shao-yong. Analysis of the research progress in the mechanism of particle mechanics action on the rheological behavior of paste in metal mines[J]. Chinese Journal of Engineering, 2022, 44(8): 1293-1305. doi: 10.13374/j.issn2095-9389.2022.03.24.004

Analysis of the research progress in the mechanism of particle mechanics action on the rheological behavior of paste in metal mines

doi: 10.13374/j.issn2095-9389.2022.03.24.004
More Information
  • Corresponding author: E-mail: ziyuan0902rze@163.com
  • Received Date: 2022-03-24
    Available Online: 2022-05-05
  • Publish Date: 2022-07-06
  • The cemented paste backfill (CPB), a current research hotspot, is a safe, green, and efficient technical means to reduce cost and meet the requirements of solid waste treatment. The paste slurry is prepared from a variety of filling materials and later transported to the underground mining area through a pipeline; thus, it must meet the flow and transportation requirements. Additionally, the rheological properties of CPB significantly affect the flowability and transportability of the filling slurry, a key index to evaluate the performance of the filling slurry. However, due to the multiscale and high concentration of CPB, its rheological behavior is highly complex, and the existing rheological model is insufficient in describing the rheological behavior of the paste under shearing. The paste slurry will show a solid–fluid transition phenomenon at an ultralow shear rate, shear thinning at a steady-state shear, and shear thickening at a considerably high shear rate; the common rheological model can only be applied to the range of action of steady-state shear. Thus, the mechanism of the rheological behavior must be studied to identify the causes of the rheological model failure and discuss the fine mechanical mechanism between particles during shear. Conclusively, the interaction between the tailing particles and the tailing sand particles and water varying the overall friction coefficient of the paste with the application of shear rate is the root cause of the complex rheological behavior exhibited by CPB. By analyzing the limitations of the traditional paste rheological model, the domestic and international literature studies are reviewed based on the surface properties of particles and the interaction between the particles and water. First, the reasons for the formation of the hydrogen bond network structure on the surface of tailing particles and their influencing factors were analyzed. Next, the origin and variation of the microscopic friction force between particles under shearing influenced by the hydrogen bond network structure were described. The internal mechanisms of the rheological behaviors, including shear banding, shear thinning, and shear thickening, were analyzed, and the friction dissipation law of the paste rheological behavior with the changing shear rate was summarized. It is proposed that the accurate measurement of macroscopic friction is the key to analyzing its rheological behavior in the paste system, and clarification of the fine mechanical mechanism of complex rheological behavior promotes the development of metal ore paste rheology from macroscopic rheology to mesoscopic causation.

     

  • loading
  • [1]
    吳愛祥, 楊瑩, 程海勇, 等. 中國膏體技術發展現狀與趨勢. 工程科學學報, 2018, 40(5):517

    Wu A X, Yang Y, Cheng H Y, et al. Status and prospects of paste technology in China. Chin J Eng, 2018, 40(5): 517
    [2]
    程海勇, 吳愛祥, 吳順川, 等. 金屬礦山固廢充填研究現狀與發展趨勢. 工程科學學報, 2022, 44(1):11

    Cheng H Y, Wu A X, Wu S C, et al. Research status and development trend of solid waste backfill in metal mines. Chin J Eng, 2022, 44(1): 11
    [3]
    吳愛祥, 李紅, 程海勇, 等. 全尾砂膏體流變學研究現狀與展望(上): 概念、特性與模型. 工程科學學報, 2020, 42(7):803

    Wu A X, Li H, Cheng H Y, et al. Status and prospects of researches on rheology of paste backfill using unclassifiedtailings(Part 1): Concepts, characteristics and models. Chin J Eng, 2020, 42(7): 803
    [4]
    李翠平, 顏丙恒, 侯賀子, 等. 全尾砂充填膏體固-流轉換階段的流變行為. 中國有色金屬學報, 2020, 30(5):1209 doi: 10.11817/j.ysxb.1004.0609.2020-39505

    Li C P, Yan B H, Hou H Z, et al. Rheological behavior of solid-liquid conversion stage of unclassified tailings backfill paste. Chin J Nonferrous Met, 2020, 30(5): 1209 doi: 10.11817/j.ysxb.1004.0609.2020-39505
    [5]
    Chatté G, Comtet J, Niguès A, et al. Shear thinning in non-Brownian suspensions. Soft Matter, 2018, 14(6): 879 doi: 10.1039/C7SM01963G
    [6]
    Ness C, Sun J. Flow regime transitions in dense non-Brownian suspensions: Rheology, microstructural characterization, and constitutive modeling. Phys Rev E, 2015, 91: 012201 doi: 10.1103/PhysRevE.91.012201
    [7]
    Leighton D, Acrivos A. Viscous resuspension. Chem Eng Sci, 1986, 41(6): 1377 doi: 10.1016/0009-2509(86)85225-3
    [8]
    Trulsson M, DeGiuli E, Wyart M. Effect of friction on dense suspension flows of hard particles. Phys Rev E, 2017, 95: 012605 doi: 10.1103/PhysRevE.95.012605
    [9]
    Lavrenteva O M, Nir A. Shear-induced particles migration in a Bingham fluid. J Non Newton Fluid Mech, 2016, 238: 80 doi: 10.1016/j.jnnfm.2016.11.002
    [10]
    Brown E, Jaeger H M. The role of dilation and confining stresses in shear thickening of dense suspensions. J Rheol, 2012, 56(4): 875 doi: 10.1122/1.4709423
    [11]
    Neelakantan R, Vaezi G F, Sanders R S. Effect of shear on the yield stress and aggregate structure of flocculant-dosed, concentrated kaolinite suspensions. Miner Eng, 2018, 123: 95 doi: 10.1016/j.mineng.2018.03.016
    [12]
    Zhang A N, Murch W L, Einarsson J, et al. Lift and drag force on a spherical particle in a viscoelastic shear flow. J Non Newton Fluid Mech, 2020, 280: 104279 doi: 10.1016/j.jnnfm.2020.104279
    [13]
    Ovarlez G, Rodts S, Chateau X, et al. Phenomenology and physical origin of shear localization and shear banding in complex fluids. Rheol Acta, 2009, 48: 831
    [14]
    Ness C, Sun J. Shear thickening regimes of dense non-Brownian suspensions. Soft Matter, 2016, 12(3): 914 doi: 10.1039/C5SM02326B
    [15]
    More R V, Ardekani A M. Unifying disparate rate-dependent rheological regimes in non-Brownian suspensions. Phys Rev E, 2021, 103(6): 062610 doi: 10.1103/PhysRevE.103.062610
    [16]
    Papadopoulou A, Gillissen J J, Wilson H J, et al. On the shear thinning of non-Brownian suspensions: Friction or adhesion? J Non Newton Fluid Mech, 2020, 281: 104298
    [17]
    Hsu C P, Mandal J, Ramakrishna S N, et al. Exploring the roles of roughness, friction and adhesion in discontinuous shear thickening by means of thermo-responsive particles. Nat Commun, 2021, 12: 1477 doi: 10.1038/s41467-021-21580-y
    [18]
    Erba? A, Horinek D, Netz R R. Viscous friction of hydrogen-bonded matter. J Am Chem Soc, 2012, 134(1): 623 doi: 10.1021/ja209454a
    [19]
    James N M, Han E D, de la Cruz R A L, et al. Interparticle hydrogen bonding can elicit shear jamming in dense suspensions. Nat Mater, 2018, 17(11): 965 doi: 10.1038/s41563-018-0175-5
    [20]
    薛振林, 張友志, 鮑亞豪, 等. 考慮溫度影響的全尾砂料漿流變性能研究. 金屬礦山, 2016(10):35 doi: 10.3969/j.issn.1001-1250.2016.10.008

    Xue Z L, Zhang Y Z, Bao Y H, et al. Study on rheological property of unclassified-tailing slurry considering the temperature effect. Met Mine, 2016(10): 35 doi: 10.3969/j.issn.1001-1250.2016.10.008
    [21]
    Lv Y Y, Zhu W, Han T T. Mechanism underlying bonding water film effect on rheological parameters. Adv Mater Sci Eng, 2016, 2016: 8451391
    [22]
    彭逸明, 馬昆林, 于連山, 等. 新拌水泥漿體在不同流變模型下流變參數表征適用性研究. 鐵道科學與工程學報, 2021, 18(4):934

    Peng Y M, Ma K L, Yu L S, et al. Applicability of rheological parameters characterization of fresh cement paste under different rheological models. J Railw Sci Eng, 2021, 18(4): 934
    [23]
    李帥, 王新民, 張欽禮, 等. 超細全尾砂似膏體長距離自流輸送的時變特性. 東北大學學報(自然科學版), 2016, 37(7):1045 doi: 10.3969/j.issn.1005-3026.2016.07.028

    Li S, Wang X M, Zhang Q L, et al. Time-varying characteristic of paste-like super-fine unclassified tailings in long self-flowing transportation. J Northeast Univ (Nat Sci), 2016, 37(7): 1045 doi: 10.3969/j.issn.1005-3026.2016.07.028
    [24]
    Yahia A, Khayat K H. Analytical models for estimating yield stress of high-performance pseudoplastic grout. Cem Concr Res, 2001, 31(5): 731 doi: 10.1016/S0008-8846(01)00476-8
    [25]
    Lee J K, Ko J, Kim Y S. Rheology of fly ash mixed tailings slurries and applicability of prediction models. Minerals, 2017, 7(9): 165 doi: 10.3390/min7090165
    [26]
    Güllü H. Comparison of rheological models for jet grout cement mixtures with various stabilizers. Constr Build Mater, 2016, 127: 220 doi: 10.1016/j.conbuildmat.2016.09.129
    [27]
    Lerner E, Düring G, Wyart M. A unified framework for non-Brownian suspension flows and soft amorphous solids. Proc Natl Acad Sci 2012, 109(13): 4798
    [28]
    Feys D, Verhoeven R, De Schutter G. Evaluation of time independent rheological models applicable to fresh self-compacting concrete. Appl Rheol, 2007, 17(5): 56244
    [29]
    Paredes J, Shahidzadeh-Bonn N, Bonn D. Shear banding in thixotropic and normal emulsions. J Phys:Condens Matter, 2011, 23(28): 284116 doi: 10.1088/0953-8984/23/28/284116
    [30]
    Larson R G, Wei Y F. A review of thixotropy and its rheological modeling. J Rheol, 2019, 63(3): 477 doi: 10.1122/1.5055031
    [31]
    Ley-Hernández A M, Feys D. Effect of sedimentation on the rheological properties of cement pastes. Mater Struct, 2021, 54: 47 doi: 10.1617/s11527-021-01619-8
    [32]
    Abbott J R, Tetlow N, Graham A L, et al. Experimental observations of particle migration in concentrated suspensions: Couette flow. J Rheol, 1991, 35(5): 773 doi: 10.1122/1.550157
    [33]
    Han K D, Xiao J, Zhang Z D, et al. Effect of particle size distribution on flocculation and its growth in cement-ground limestone suspensions. Constr Build Mater, 2020, 262: 120047 doi: 10.1016/j.conbuildmat.2020.120047
    [34]
    金子嵩, 宋云鵬, 張金鳳, 等. 基于原子力顯微鏡的膠體顆粒相互作用力測量研究. 電子顯微學報, 2016, 35(2):132 doi: 10.3969/j.issn.1000-6281.2016.02.006

    Jin Z S, Song Y P, Zhang J F, et al. Research on the measurement of the interaction forces between colloidal particles based on atomic force microscopy. J Chin Electron Microsc Soc, 2016, 35(2): 132 doi: 10.3969/j.issn.1000-6281.2016.02.006
    [35]
    Syngouna V I, Chrysikopoulos C V. Cotransport of clay colloids and viruses in water saturated porous media. Colloids Surf A Physicochem Eng Aspects, 2013, 416: 56 doi: 10.1016/j.colsurfa.2012.10.018
    [36]
    Al Mahrouqi D, Vinogradov J, Jackson M D. Zeta potential of artificial and natural calcite in aqueous solution. Adv Colloid Interface Sci, 2017, 240: 60 doi: 10.1016/j.cis.2016.12.006
    [37]
    Th?gersen K, Dabrowski M, Malthe-S?renssen A. Transient cluster formation in sheared non-Brownian suspensions. Phys Rev E, 2016, 93(2): 022611 doi: 10.1103/PhysRevE.93.022611
    [38]
    肖佳, 韓凱東, 左勝浩, 等. 水泥-石灰石粉漿體結構建立與顆粒間作用力的關系. 建筑材料學報, 2021, 24(3):447 doi: 10.3969/j.issn.1007-9629.2021.03.001

    Xiao J, Han K D, Zuo S H, et al. Relationship between structural build-up and interparticle forces of cement-ground limestone pastes. J Build Mater, 2021, 24(3): 447 doi: 10.3969/j.issn.1007-9629.2021.03.001
    [39]
    Gao J, Mwasame P M, Wagner N J. Thermal rheology and microstructure of shear thickening suspensions of silica nanoparticles dispersed in the ionic liquid [C4mim][BF4]. J Rheol, 2017, 61(3): 525 doi: 10.1122/1.4979685
    [40]
    Lassaigne M, Blais B, Fradette L, et al. Experimental investigation of the mixing of viscous liquids and non-dilute concentrations of particles in a stirred tank. Chem Eng Res Des, 2016, 108: 55 doi: 10.1016/j.cherd.2016.01.005
    [41]
    Russel W B, Gast A P. Nonequilibrium statistical mechanics of concentrated colloidal dispersions: Hard spheres in weak flows. J Chem Phys, 1986, 84(3): 1815 doi: 10.1063/1.450428
    [42]
    Singh A, Pednekar S, Chun J, et al. From yielding to shear jamming in a cohesive frictional suspension. Phys Rev Lett, 2019, 122(9): 098004 doi: 10.1103/PhysRevLett.122.098004
    [43]
    Mujumdar A, Beris A N, Metzner A B. Transient phenomena in thixotropic systems. J Non Newton Fluid Mech, 2002, 102(2): 157 doi: 10.1016/S0377-0257(01)00176-8
    [44]
    James N, Hsu C P, Spencer N D, et al. Tuning interparticle hydrogen bonding in shear-jamming suspensions: Kinetic effects and consequences for tribology and rheology. J Phys Chem Lett, 2019, 10(8): 1663 doi: 10.1021/acs.jpclett.9b00135
    [45]
    Stillinger F H. Water revisited. Science, 1980, 209(4455): 451 doi: 10.1126/science.209.4455.451
    [46]
    Xiao C, Shi P F, Yan W M, et al. Thickness and structure of adsorbed water layer and effects on adhesion and friction at nanoasperity contact. Colloids Interfaces, 2019, 3(3): 55 doi: 10.3390/colloids3030055
    [47]
    Saint-Michel B, Manneville S, Meeker S, et al. X-ray radiography of viscous resuspension. Phys Fluids, 2019, 31(10): 103301 doi: 10.1063/1.5103271
    [48]
    廖祥磊, 閔凡飛, 劉令云. 褐煤顆粒界面與煤泥水溶液相互作用機制. 礦物學報, 2018, 38(1):85

    Liao X L, Min F F, Liu L Y. A Study on interaction mechanism between lignite particle interface and slime water. Acta Mineral Sin, 2018, 38(1): 85
    [49]
    李根, 王克亮, 逯春晶. 顆粒聚集體對兩性SiO2顆粒無水泡沫表面性質的影響. 高等學校化學學報, 2020, 41(9):2038 doi: 10.7503/cjcu20200296

    Li G, Wang K L, Lu C J. Effect of particle aggregates on the surface properties of amphiphilic SiO2 particles in anhydrous foam. Chem J Chin Univ, 2020, 41(9): 2038 doi: 10.7503/cjcu20200296
    [50]
    Duan X M. Mechanical effects of solid water on the particle skeleton of soil: Mechanism analysis. Geofluids, 2021, 2021: 9969023
    [51]
    Masuda H, Tsuda K, Matsui K, et al. Effect of shear rate distribution on particle aggregation in a stirred vessel. Chem Eng Technol, 2017, 40(3): 493 doi: 10.1002/ceat.201600332
    [52]
    Israelachvili J N, Pashley R M. Molecular layering of water at surfaces and origin of repulsive hydration forces. Nature, 1983, 306(5940): 249 doi: 10.1038/306249a0
    [53]
    Richards J A, O’Neill R E, Poon W C K. Turning a yield-stress calcite suspension into a shear-thickening one by tuning inter-particle friction. Rheol Acta, 2021, 60(2-3): 97 doi: 10.1007/s00397-020-01247-z
    [54]
    Pfeifer J C, Bischoff T, Ehlers G, et al. Order-disorder transitions in a sheared many-body system. Phys Rev E Stat Nonlinear Soft Matter Phys, 2015, 92(6): 062208 doi: 10.1103/PhysRevE.92.062208
    [55]
    Masschaele K, Fransaer J, Vermant J. Flow-induced structure in colloidal gels: Direct visualization of model 2D suspensions. Soft Matter, 2011, 7(17): 7717 doi: 10.1039/c1sm05271c
    [56]
    Fall A, Bertrand F, Ovarlez G, et al. Yield stress and shear banding in granular suspensions. Phys Rev Lett, 2009, 103(17): 178301 doi: 10.1103/PhysRevLett.103.178301
    [57]
    Madraki Y, Oakley A, Nguyen le A, et al. Shear thickening in dense non-Brownian suspensions: Viscous to inertial transition. J Rheol, 2020, 64(2): 227 doi: 10.1122/1.5129680
    [58]
    Richards J A, Guy B M, Blanco E, et al. The role of friction in the yielding of adhesive non-Brownian suspensions. J Rheol, 2020, 64(2): 405 doi: 10.1122/1.5132395
    [59]
    Lobry L, Lemaire E, Blanc F, et al. Shear thinning in non-Brownian suspensions explained by variable friction between particles. J Fluid Mech, 2019, 860: 682 doi: 10.1017/jfm.2018.881
    [60]
    Guazzelli é, Pouliquen O. Rheology of dense granular suspensions. J Fluid Mech, 2018, 852: P1 doi: 10.1017/jfm.2018.548
    [61]
    Guy B M, Hermes M, Poon W C K. Towards a unified description of the rheology of hard-particle suspensions. Phys Rev Lett, 2015, 115(8): 088304
    [62]
    Ovarlez G, Bertrand F, Rodts S. Local determination of the constitutive law of a dense suspension of noncolloidal particles through magnetic resonance imaging. J Rheol, 2006, 50(3): 259 doi: 10.1122/1.2188528
    [63]
    Kerisit S. Water structure at hematite-water interfaces. Geochimica Cosmochimica Acta, 2011, 75(8): 2043 doi: 10.1016/j.gca.2011.01.026
    [64]
    Murray J S, Politzer P. Hydrogen bonding: A Coulombic σ-hole interaction. J Indian I Sci, 2020, 100(1): 21 doi: 10.1007/s41745-019-00139-3
    [65]
    Fuerstenau D W, Pradip. Zeta potentials in the flotation of oxide and silicate minerals. Adv Colloid Interface Sci, 2005, 114-115: 9 doi: 10.1016/j.cis.2004.08.006
    [66]
    Shen Y R, Ostroverkhov V. Sum-frequency vibrational spectroscopy on water interfaces: Polar orientation of water molecules at interfaces. Chem Rev, 2006, 106(4): 1140 doi: 10.1021/cr040377d
    [67]
    習志臻. 水泥顆粒的電動現象及泡沫混凝土的研究. 混凝土, 2000(11):48

    Xi Z Z. Electromotion phenomena of cement particle and study of foam concrete. Concrete, 2000(11): 48
    [68]
    Israelachvili J N. Forces between surfaces in liquids. Adv Colloid Interface Sci, 1982, 16(1): 31 doi: 10.1016/0001-8686(82)85004-5
    [69]
    Ye?ilba? M, Boily J F. Particle size controls on water adsorption and condensation regimes at mineral surfaces. Sci Rep, 2016, 6: 32136 doi: 10.1038/srep32136
    [70]
    Jab?oński M. Intramolecular hydrogen bonding 2021. Molecules, 2021, 26(20): 6319 doi: 10.3390/molecules26206319
    [71]
    Kebede G, Mitev P D, Broqvist P, et al. Hydrogen-bond relations for surface OH species. J Phys Chem C, 2018, 122(9): 4849 doi: 10.1021/acs.jpcc.7b10981
    [72]
    Yamakata A, Osawa M. Cation-dependent restructure of the electric double layer on CO-covered Pt electrodes: Difference between hydrophilic and hydrophobic cations. J Electroanal Chem, 2017, 800: 19 doi: 10.1016/j.jelechem.2016.12.034
    [73]
    Wong P L, Huang P, Meng Y. The effect of the electric double layer on a very thin water lubricating film. Tribol Lett, 2003, 14(3): 197 doi: 10.1023/A:1022320531293
    [74]
    Joshi N, Romanias M N, Riffault V, et al. Investigating water adsorption onto natural mineral dust particles: Linking DRIFTS experiments and BET theory. Aeolian Res, 2017, 27: 35 doi: 10.1016/j.aeolia.2017.06.001
    [75]
    Morag J, Dishon M, Sivan U. The governing role of surface hydration in ion specific adsorption to silica: An AFM-based account of the hofmeister universality and its reversal. Langmuir, 2013, 29(21): 6317 doi: 10.1021/la400507n
    [76]
    Johansen R T. Water-vapor adsorption on clays. Clays Clay Miner, 1957, 6(1): 249 doi: 10.1346/CCMN.1957.0060119
    [77]
    Ruckenstein E, Manciu M. The coupling between the hydration and double layer interactions. Langmuir, 2002, 18(20): 7584 doi: 10.1021/la020435v
    [78]
    Jiang E, Huo J, Luo Y, et al. Influence of electric field on nanoconfined proton behaviours: A molecular dynamics simulation. J Mol Liq, 2020, 319: 114113 doi: 10.1016/j.molliq.2020.114113
    [79]
    Li H L, Xu W N, Jia F F, et al. Correlation between surface charge and hydration on mineral surfaces in aqueous solutions: A critical review. Int J Miner Metall Mater, 2020, 27(7): 857 doi: 10.1007/s12613-020-2078-0
    [80]
    Karaborni S, Smit B, Heidug W, et al. The swelling of clays: Molecular simulations of the hydration of montmorillonite. Science, 1996, 271(5252): 1102 doi: 10.1126/science.271.5252.1102
    [81]
    Osipov V I. Nanofilms of adsorbed water in clay: Mechanism of formation and properties. Water Resour, 2012, 39(7): 709 doi: 10.1134/S009780781207010X
    [82]
    Ranieri U, Giura P, Gorelli F A, et al. Dynamical crossover in hot dense water: The hydrogen bond role. J Phys Chem B, 2016, 120(34): 9051 doi: 10.1021/acs.jpcb.6b04142
    [83]
    Berenguer R A, Lima N B, Lima V M E, et al. The role of hydrogen bonds on the mechanical properties of cement-based mortars applied to concrete surfaces. Cem Concr Compos, 2021, 115: 103848 doi: 10.1016/j.cemconcomp.2020.103848
    [84]
    Sanders S E, Vanselous H, Petersen P B. Water at surfaces with tunable surface chemistries. J Phys Condens Matter, 2018, 30(11): 113001 doi: 10.1088/1361-648X/aaacb5
    [85]
    Donose B C, Vakarelski I U, Higashitani K. Silica surfaces lubrication by hydrated cations adsorption from electrolyte solutions. Langmuir, 2005, 21(5): 1834 doi: 10.1021/la047609o
    [86]
    Gumulya M M, Horsley R R, Wilson K C, et al. A new fluid model for particles settling in a viscoplastic fluid. Chem Eng Sci, 2011, 66(4): 729 doi: 10.1016/j.ces.2010.11.037
    [87]
    Chen Y S, Zhang W, Yu L. Hydrogen bonding slows down surface diffusion of molecular glasses. J Phys Chem B, 2016, 120(32): 8007 doi: 10.1021/acs.jpcb.6b05658
    [88]
    Yamaguchi T. Structural origin of shear viscosity of liquid water. J Phys Chem B, 2018, 122(3): 1255 doi: 10.1021/acs.jpcb.7b10893
    [89]
    Perticaroli S, Mostofian B, Ehlers G, et al. Structural relaxation, viscosity, and network connectivity in a hydrogen bonding liquid. Phys Chem Chem Phys, 2017, 19(38): 25859 doi: 10.1039/C7CP04013J
    [90]
    Koos E, Willenbacher N. Capillary forces in suspension rheology. Science, 2011, 331(6019): 897 doi: 10.1126/science.1199243
    [91]
    Papadopoulou A, Gillissen J J J, Tiwari M K, et al. Effect of particle specific surface area on the rheology of non-Brownian silica suspensions. Materials, 2020, 13(20): 4628 doi: 10.3390/ma13204628
    [92]
    Blanc F, D'Ambrosio E, Lobry L, et al. Universal scaling law in frictional non-Brownian suspensions. Phys Rev Fluids, 2018, 3(11): 114303 doi: 10.1103/PhysRevFluids.3.114303
    [93]
    Katainen J, Paajanen M, Ahtola E, et al. Adhesion as an interplay between particle size and surface roughness. J Colloid Interface Sci, 2006, 304(2): 524 doi: 10.1016/j.jcis.2006.09.015
    [94]
    Xing B D, Fan W Y, Lyu Y C, et al. Influence of particle mineralogy and size on the morphological characteristics of mineral fillers. J Mater Res Technol, 2021, 15: 3995 doi: 10.1016/j.jmrt.2021.10.026
    [95]
    Udvardi B, Kovács I J, Fancsik T, et al. Effects of particle size on the attenuated total reflection spectrum of minerals. Appl Spectrosc, 2017, 71(6): 1157 doi: 10.1177/0003702816670914
    [96]
    龍海潮, 夏建新, 曹斌. 基于低場核磁共振技術的水煤漿水分狀態與定量分析. 泥沙研究, 2018, 43(3):44

    Long H C, Xia J X, Cao B. Quantitative analysis on water status in coal-water slurry based on low field nuclear magnetic resonance technology. J Sediment Res, 2018, 43(3): 44
    [97]
    Quezada G R, Rozas R E, Toledo P G. Molecular dynamics simulations of quartz (101)–water and corundum (001)–water interfaces: Effect of surface charge and ions on cation adsorption, water orientation, and surface charge reversal. J Phys Chem C, 2017, 121(45): 25271 doi: 10.1021/acs.jpcc.7b08836
    [98]
    Min F F, Peng C L, Song S X. Hydration layers on clay mineral surfaces in aqueous solutions: A review/warstwy uwodnione Na powierzchni minera?ów ilastych W roztworach wodnych: Przegl?d. Arch Min Sci, 2014, 59(2): 489
    [99]
    Dusek U, Frank G P, Hildebrandt L, et al. Size matters more than chemistry for cloud-nucleating ability of aerosol particles. Science, 2006, 312(5778): 1375 doi: 10.1126/science.1125261
    [100]
    Franks G V. Zeta potentials and yield stresses of silica suspensions in concentrated monovalent electrolytes: Isoelectric point shift and additional attraction. J Colloid Interface Sci, 2002, 249(1): 44 doi: 10.1006/jcis.2002.8250
    [101]
    Kilpatrick J I, Loh S H, Jarvis S P. Directly probing the effects of ions on hydration forces at interfaces. J Am Chem Soc, 2013, 135(7): 2628 doi: 10.1021/ja310255s
    [102]
    DeWalt-Kerian E L, Kim S, Azam M S, et al. pH-dependent inversion of hofmeister trends in the water structure of the electrical double layer. J Phys Chem Lett, 2017, 8(13): 2855 doi: 10.1021/acs.jpclett.7b01005
    [103]
    Oh M I, Gupta M, Oh C I, et al. Understanding the effect of nanoconfinement on the structure of water hydrogen bond networks. Phys Chem Chem Phys, 2019, 21(47): 26237 doi: 10.1039/C9CP05014K
    [104]
    Rehl B, Gibbs J M. Role of ions on the surface-bound water structure at the silica/water interface: Identifying the spectral signature of stability. J Phys Chem Lett, 2021, 12(11): 2854 doi: 10.1021/acs.jpclett.0c03565
    [105]
    Cheng H Y, Wu S C, Li H, et al. Influence of time and temperature on rheology and flow performance of cemented paste backfill. Constr Build Mater, 2020, 231: 117117 doi: 10.1016/j.conbuildmat.2019.117117
    [106]
    Churayev N V, Sobolev V D, Zorin Z M. Measurement of viscosity of liquids in quartz capillaries. Spec Discuss Faraday Soc, 1970, 1: 213 doi: 10.1039/sd9700100213
    [107]
    Zhuravlev L T. The surface chemistry of amorphous silica. Zhuravlev model. Colloids Surf A Physicochem Eng Aspects, 2000, 173(1-3): 1
    [108]
    Raghavan S R, Walls H J, Khan S A. Rheology of silica dispersions in organic liquids: ? new evidence for solvation forces dictated by hydrogen bonding. Langmuir, 2000, 16(21): 7920 doi: 10.1021/la991548q
    [109]
    Arshad M, Maali A, Claudet C, et al. An experimental study on the role of inter-particle friction in the shear-thinning behavior of non-Brownian suspensions. Soft Matter, 2021, 17(25): 6088 doi: 10.1039/D1SM00254F
    [110]
    Miller J D, Wang X M, Jin J Q, et al. Interfacial water structure and the wetting of mineral surfaces. Int J Miner Process, 2016, 156: 62 doi: 10.1016/j.minpro.2016.02.004
    [111]
    Leighton D, Acrivos A. The shear-induced migration of particles in concentrated suspensions. J Fluid Mech, 1987, 181: 415 doi: 10.1017/S0022112087002155
    [112]
    Morris J F. A review of microstructure in concentrated suspensions and its implications for rheology and bulk flow. Rheol Acta, 2009, 48(8): 909 doi: 10.1007/s00397-009-0352-1
    [113]
    Tanner R I, Dai S C. Particle roughness and rheology in noncolloidal suspensions. J Rheol, 2016, 60(4): 809 doi: 10.1122/1.4954643
    [114]
    Wilms P, Hinrichs J, Kohlus R. Macroscopic rheology of non-Brownian suspensions at high shear rates: The influence of solid volume fraction and non-Newtonian behaviour of the liquid phase. Rheol Acta, 2022, 61(2): 123 doi: 10.1007/s00397-021-01320-1
    [115]
    Blanc F, Peters F, Lemaire E. Local transient rheological behavior of concentrated suspensions. J Rheol, 2011, 55(4): 835 doi: 10.1122/1.3582848
    [116]
    Olanrewaju K O, Bae T H, Nair S, et al. The rheology of suspensions of porous zeolite particles in polymer solutions. Rheol Acta, 2014, 53(2): 133 doi: 10.1007/s00397-013-0746-y
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(1)

    Article views (624) PDF downloads(88) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频