Citation: | WANG Zhong-liang, BAO Yan-ping, GU Chao, XIAO Wei, LIU Yu, HUANG Yong-sheng. Key metallurgical technology for high-quality bearing steel production based on the nonaluminum deoxidation process[J]. Chinese Journal of Engineering, 2022, 44(9): 1607-1619. doi: 10.13374/j.issn2095-9389.2022.03.07.003 |
[1] |
曹文全, 俞峰, 王存宇, 等. 高端裝備用軸承鋼冶金質量性能現狀及未來發展方向. 特殊鋼, 2021, 42(1):1
Cao W Q, Yu F, Wang C Y, et al. Status and future development of metallurgical quality and performance of bearing steels for high-end equipment. Special Steel, 2021, 42(1): 1
|
[2] |
顧超, 王仲亮, 肖微, 等. 高疲勞壽命軸承鋼潔凈度現狀及研究進展. 工程科學學報, 2021, 43(3):299
Gu C, Wang Z L, Xiao W, et al. Research status and progress on cleanliness of high-fatigue-life bearing steels. Chin J Eng, 2021, 43(3): 299
|
[3] |
Neishi Y, Makino T, Matsui N, et al. Influence of the inclusion shape on the rolling contact fatigue life of carburized steels. Metall Mater Trans A, 2013, 44(5): 2131 doi: 10.1007/s11661-012-1344-9
|
[4] |
Moghaddam S M, Sadeghi F. A review of microstructural alterations around nonmetallic inclusions in bearing steel during rolling contact fatigue. Tribol Trans, 2016, 59(6): 1142 doi: 10.1080/10402004.2016.1141447
|
[5] |
Hashimoto K, Fujimatsu T, Tsunekage N, et al. Effect of inclusion/matrix interface cavities on internal-fracture-type rolling contact fatigue life. Mater Des, 2011, 32(10): 4980 doi: 10.1016/j.matdes.2011.06.056
|
[6] |
宗男夫, 黃健, 劉軍, 等. 軸承鋼質量提升的關鍵冶金技術現狀及展望. 軸承, 2020(12):60
Zong N F, Huang J, Liu J, et al. Present situation and prospect of key metallurgical technologies for improving quality of bearing steel. Bearing, 2020(12): 60
|
[7] |
Birat J P. Impact of steelmaking and casting technologies on processing and properties of steel. Ironmak Steelmak, 2001, 28(2): 152 doi: 10.1179/030192301677885
|
[8] |
劉瀏. 高品質特殊鋼關鍵生產技術. 鋼鐵, 2018, 53(4):1
Liu L. Key production-technology for high-quality special steels. Iron Steel, 2018, 53(4): 1
|
[9] |
Xiao W, Bao Y P, Gu C, et al. Ultrahigh cycle fatigue fracture mechanism of high-quality bearing steel obtained through different deoxidation methods. Int J Miner Metall Mater, 2021, 28(5): 804 doi: 10.1007/s12613-021-2253-y
|
[10] |
李明, 王新成, 段加恒, 等. 軸承鋼中D類夾雜物的形成與控制. 工程科學學報, 2018, 40(S1): 31
Li M, Wang X C, Duan J H, et al. Formation and controlling of Type-D inclusions in bearing steel. Chin J Eng, 2018, 40(Suppl 1): 31
|
[11] |
Gu C, Bao Y P, Gan P, et al. Effect of main inclusions on crack initiation in bearing steel in the very high cycle fatigue regime. Int J Miner Metall Mater, 2018, 25(6): 623 doi: 10.1007/s12613-018-1609-4
|
[12] |
Kamiya T, Mizobe K, Kida K. Effect of observation position of SUJ2 bar specimens on inclusions distribution. IOP Conf Ser:Mater Sci Eng, 2018, 307: 012046 doi: 10.1088/1757-899X/307/1/012046
|
[13] |
Gu C, Wang M, Bao Y P, et al. Quantitative analysis of inclusion engineering on the fatigue property improvement of bearing steel. Metals, 2019, 9(4): 476 doi: 10.3390/met9040476
|
[14] |
繆新德, 于春梅, 石超民, 等. 軸承鋼中鈣鋁酸鹽夾雜物的形成及控制. 北京科技大學學報, 2007, 29(8):771 doi: 10.3321/j.issn:1001-053x.2007.08.005
Miao X D, Yu C M, Shi C M, et al. Formation and controlling of calcium-aluminates inclusions in bearing steel. J Univ Sci Technol Beijing, 2007, 29(8): 771 doi: 10.3321/j.issn:1001-053x.2007.08.005
|
[15] |
肖微, 包燕平, 王敏, 等. 非鋁脫氧GCr15軸承鋼的夾雜物演變和控制. 鋼鐵, 2021, 56(1):37
Xiao W, Bao Y P, Wang M, et al. Inclusions evolution and control of non-aluminum deoxidized GCr15 bearing steel. Iron Steel, 2021, 56(1): 37
|
[16] |
王立峰, 卓曉軍, 張炯明, 等. 冶金過程中簾線鋼夾雜物成分控制. 北京科技大學學報, 2003, 25(4):308 doi: 10.3321/j.issn:1001-053X.2003.04.005
Wang L F, Zhuo X J, Zhang J M, et al. Controlling inclusion composition in steelmaking process for tire cord steel. J Univ Sci Technol Beijing, 2003, 25(4): 308 doi: 10.3321/j.issn:1001-053X.2003.04.005
|
[17] |
王新華. 鋼鐵冶金: 煉鋼學. 北京: 高等教育出版社, 2007
Wang X H. Iron and Steel Metallurgy: Steelmaking. Beijing: Higher Education Press, 2007
|
[18] |
徐掌印, 趙增武, 姜銀舉, 等. 含鈮鐵水直接冶煉含鈮微合金鋼的試驗. 鋼鐵, 2015, 50(4):13
Xu Z Y, Zhao Z W, Jiang Y J, et al. Experiment on Nb-bearing microalloyed steel made directly by Nb-bearing hot metal. Iron Steel, 2015, 50(4): 13
|
[19] |
宋磊, 王敏, 李新, 等. 含錳鋼RH真空過程錳的遷移行為. 工程科學學報, 2020, 42(3):331
Song L, Wang M, Li X, et al. Manganese migration behavior in the RH vacuum process of manganese-containing steel. Chin J Eng, 2020, 42(3): 331
|
[20] |
Ling H T, Zhang L F. A mathematical model for prediction of carbon concentration during RH refining process. Metall Mater Trans B, 2018, 49(6): 2963 doi: 10.1007/s11663-018-1403-8
|
[21] |
Walker P F F. Improving the reliability of highly loaded rolling bearings: The effect of upstream processing on inclusions. Mater Sci Technol, 2014, 30(4): 385 doi: 10.1179/1743284713Y.0000000491
|
[22] |
Spriestersbach D, Grad P, Kerscher E. Influence of different non-metallic inclusion types on the crack initiation in high-strength steels in the VHCF regime. Int J Fatigue, 2014, 64: 114 doi: 10.1016/j.ijfatigue.2014.03.003
|
[23] |
謝文新, 包燕平, 王敏, 等. GCr15軸承鋼探傷缺陷與夾雜物的關系. 鋼鐵, 2015, 50(3):44
Xie W X, Bao Y P, Wang M, et al. Relationship between high frequency defect detection and inclusions in GCr15 bearing steel. Iron Steel, 2015, 50(3): 44
|
[24] |
Park J H, Todoroki H. Control of MgO·Al2O3 spinel inclusions in stainless steels. ISIJ Int, 2010, 50(10): 1333 doi: 10.2355/isijinternational.50.1333
|
[25] |
李林, 江野, 吳建永, 等. GCr15鋼澆注過程浸入式水口結瘤的原因及控制. 上海金屬, 2020, 42(6):35 doi: 10.3969/j.issn.1001-7208.2020.06.009
Li L, Jiang Y, Wu J Y, et al. Formation and control of blockage at submerged nozzle of mold during GCr15 steel casting. Shanghai Met, 2020, 42(6): 35 doi: 10.3969/j.issn.1001-7208.2020.06.009
|
[26] |
Sasai K, Mizukami Y. Mechanism of alumina adhesion to continuous caster nozzle with reoxidation of molten steel. ISIJ Int, 2001, 41(11): 1331 doi: 10.2355/isijinternational.41.1331
|
[27] |
華承健, 王敏, 張孟昀, 等. 浸入式水口內壁特征對邊界層流場結構和氧化鋁夾雜物運動行為的影響. 工程科學學報, 2021, 43(7):925
Hua C J, Wang M, Zhang M Y, et al. Effect of submerged entry nozzle wall surface morphologies on boundary layer structure and alumina inclusions transport. Chin J Eng, 2021, 43(7): 925
|
[28] |
李新生, 李囡, 劉國強, 等. 高強軸承鋼GCr15的疲勞性能與壽命預測研究. 鍛壓裝備與制造技術, 2020, 55(4):141
Li X S, Li N, Liu G Q, et al. Study on fatigue performance and life prediction of high strength bearing steel GCr15. China Met Equip Manuf Technol, 2020, 55(4): 141
|
[29] |
鄧海鵬, 何柏林, 于影霞, 等. 鋼鐵材料超高周疲勞的研究進展. 熱加工工藝, 2017, 46(4):6
Deng H P, He B L, Yu Y X, et al. Research progress of ultra-high cycle fatigue for ferrous materials. Hot Work Technol, 2017, 46(4): 6
|
[30] |
Teng Z J, Wu H R, Huang Z Y, et al. Effect of mean stress in very high cycle fretting fatigue of a bearing steel. Int J Fatigue, 2021, 149: 106262 doi: 10.1016/j.ijfatigue.2021.106262
|
[31] |
顧超. 高品質軸承鋼疲勞壽命預測模型及夾雜物影響規律研究[學位論文]. 北京: 北京科技大學, 2019
Gu C. Microstructure Fatigue Life Prediction Model Based on the Effect of Inclusions in Bearing Steel [Dissertation]. Beijing: University of Science and Technology Beijing, 2019
|
[32] |
Deng Z Y, Zhu M Y. Evolution mechanism of non-metallic inclusions in Al-killed alloyed steel during secondary refining process. ISIJ Int, 2013, 53(3): 450 doi: 10.2355/isijinternational.53.450
|
[33] |
馬躍, 潘濤, 江波, 等. S含量對高速車輪鋼斷裂韌性影響的研究. 金屬學報, 2011, 47(8):978
Ma Y, Pan T, Jiang B, et al. Study of the effect of sulfur contents on fracture toughness of railway wheel steels for high speed train. Acta Metall Sin, 2011, 47(8): 978
|
[34] |
Gu C, Lian J H, Bao Y P, et al. Numerical study of the effect of inclusions on the residual stress distribution in high-strength martensitic steels during cooling. Appl Sci, 2019, 9(3): 455 doi: 10.3390/app9030455
|
[35] |
Gu C, Liu W Q, Lian J H, et al. In-depth analysis of the fatigue mechanism induced by inclusions for high-strength bearing steels. Int J Miner Metall Mater, 2021, 28(5): 826 doi: 10.1007/s12613-020-2223-9
|
[36] |
Murakami Y, Usuki H. Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. II: Fatigue limit evaluation based on statistics for extreme values of inclusion size. Int J Fatigue, 1989, 11(5): 299
|
[37] |
Unal O, Maleki E, Varol R. Comprehensive analysis of pulsed plasma nitriding preconditions on the fatigue behavior of AISI 304 austenitic stainless steel. Int J Miner Metall Mater, 2021, 28(4): 657 doi: 10.1007/s12613-020-2097-x
|