Citation: | XU Huai-bing, WANG Ting, ZOU Wen-jie, ZHAO Jian-jun, TAO Le, ZHANG Zhi-jun. Ball mill load status identification method based on the convolutional neural network, optimized support vector machine model, and intelligent grinding media[J]. Chinese Journal of Engineering, 2022, 44(11): 1821-1831. doi: 10.13374/j.issn2095-9389.2022.03.06.001 |
[1] |
湯健, 田福慶, 賈美英. 基于頻譜數據驅動的旋轉機械設備負荷軟測量. 北京: 國防工業出版社, 2015
Tang J, Tian F Q, Jia M Y, et al. Rotating Mechanical Equipment Load Soft Measurement Based on Frequency Spectrum Data Drive. Beijing: National Defense Industry Press, 2015
|
[2] |
湯健, 柴天佑, 趙立杰, 等. 基于振動頻譜的磨礦過程球磨機負荷參數集成建模方法. 控制理論與應用, 2012, 29(2):183
Tang J, Chai T Y, Zhao L J, et al. Ensemble modeling for parameters of ball-mill load in grinding process based on frequency spectrum of shell vibration. Control Theory Appl, 2012, 29(2): 183
|
[3] |
Góralczyk M, Krot P, Zimroz R, et al. Increasing energy efficiency and productivity of the comminution process in tumbling Mills by indirect measurements of internal dynamics—an overview. Energies, 2020, 13(24): 6735 doi: 10.3390/en13246735
|
[4] |
Clermont B, Haas D B, Hancotte O. Real time mill management tools stabilizing your milling process // Proceeding of third International Platinum Conference. Sharjah, 2008, 13
|
[5] |
Tang J, Yan G W, Liu Z, et al. Experimental analysis of wet mill load parameter based on multiple channel mechanical signals under multiple grinding conditions. Miner Eng, 2020, 159: 106609 doi: 10.1016/j.mineng.2020.106609
|
[6] |
Yoshida T, Kuratani F, Ito T, et al. Vibration characteristics of an operating ball mill. J Phys:Conf Ser, 2019, 1264(1): 012016 doi: 10.1088/1742-6596/1264/1/012016
|
[7] |
Dunn D J, Martin R G. Measurement of impact forces in ball mills. Min Eng, 1978, 30(4): 384
|
[8] |
Rolf L, Vongluekiet T. Measurement of energy distributions in ball Mills. Ger Chem Eng, 1984, 7(5): 287
|
[9] |
Gao R X, Thelen W. Sensor-integrated grinding balls for on-line load distribution measurement in ball Mills. Proc Inst Mech Eng B J Eng Manuf, 1994, 208(3): 183 doi: 10.1243/PIME_PROC_1994_208_077_02
|
[10] |
Martins S, Li W, Radziszewski P, et al. Validating the instrumented ball outputs with simple trajectories. Miner Eng, 2008, 21(11): 782 doi: 10.1016/j.mineng.2008.05.016
|
[11] |
Martins S, Li W, Radziszewski P, et al. Experimental and simulated instrumented ball in a tumbling mill—A comparison. Miner Eng, 2013, 43-44: 79 doi: 10.1016/j.mineng.2012.09.002
|
[12] |
Yin Z X, Peng Y X, Zhu Z C, et al. Effect of mill speed and slurry filling on the charge dynamics by an instrumented ball. Adv Powder Technol, 2019, 30(8): 1611 doi: 10.1016/j.apt.2019.05.009
|
[13] |
尹自信. 球磨機鐵礦石顆粒破碎及粒度分布行為研究[學位論文]. 徐州: 中國礦業大學, 2020
Yin Z X. Study on Breakage and Size Distribution Behaviour of Iron Ore Particle in Ball Mills [Dissertation]. Xuzhou: China University of Mining and Technology, 2020
|
[14] |
Wang T, Zou W J, Xu R J, et al. Assessing load in ball mill using instrumented grinding media. Miner Eng, 2021, 173: 107198 doi: 10.1016/j.mineng.2021.107198
|
[15] |
黃胤淇, 肖慶飛, 郭運鑫, 等. 江西某銅礦磨礦對比試驗及應用研究. 黃金科學技術, 2019, 27(2):278
Huang Y Q, Xiao Q F, Guo Y X, et al. Comparison test and application study on grinding of a copper mine in Jiangxi Province. Gold Sci Technol, 2019, 27(2): 278
|
[16] |
Xue S H, Tan J P, Shi L X, et al. Rope tension fault diagnosis in hoisting systems based on vibration signals using EEMD, improved permutation entropy, and PSO-SVM. Entropy, 2020, 22(2): 209 doi: 10.3390/e22020209
|
[17] |
李翠平, 鄭瑤瑕, 張佳, 等. 基于遺傳算法優化的支持向量機品位插值模型. 北京科技大學學報, 2013, 35(7):837
Li C P, Zheng Y X, Zhang J, et al. Ore grade interpolation model based on support vector machines optimized by genetic algorithms. J Univ Sci Technol Beijing, 2013, 35(7): 837
|
[18] |
周建民, 王發令, 張臣臣, 等. 基于特征優選和GA?SVM的滾動軸承智能評估方法. 振動與沖擊, 2021, 40(4):227 doi: 10.13465/j.cnki.jvs.2021.04.031
Zhou J M, Wang F L, Zhang C C, et al. An intelligent method for rolling bearing evaluation using feature optimization and GA?SVM. J Vib Shock, 2021, 40(4): 227 doi: 10.13465/j.cnki.jvs.2021.04.031
|
[19] |
王亮, 張安元, 李佳佳, 等. 基于時頻組合特征的PSO?SVM手勢識別方法. 長春理工大學學報(自然科學版), 2021, 44(4):104
Wang L, Zhang A Y, Li J J, et al. PSO?SVM gesture recognition method based on time-frequency combination features. J Chang Univ Sci Technol, 2021, 44(4): 104
|
[20] |
吳夏平, 王福明. 基于最小二乘法原理的趨勢項處理研究. 微計算機信息, 2008, 24(30):254 doi: 10.3969/j.issn.1008-0570.2008.30.102
Wu X P, Wang F M. The research of trend remove based on the principle of least-squares method. Microcomput Inf, 2008, 24(30): 254 doi: 10.3969/j.issn.1008-0570.2008.30.102
|
[21] |
Yeh J R, Shieh J S, Huang N E. Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method. Adv Adapt Data Anal, 2010, 2(2): 135 doi: 10.1142/S1793536910000422
|
[22] |
Cai G P, Liu X, Dai C C, et al. Load state identification method for ball mills based on improved EWT, multiscale fuzzy entropy and AEPSO_PNN classification. Processes, 2019, 7(10): 725 doi: 10.3390/pr7100725
|
[23] |
熊洋. 基于振動特征提取的球磨機負荷預測研究[學位論文]. 贛州: 江西理工大學, 2016
Xiong Y. Research on Load Prediction of Ball Mill Based on Vibration Feature Extraction [Dissertation]. Ganzhou: Jiangxi University of Science and Technology, 2016
|
[24] |
張學清, 梁軍, 張熙, 等. 基于樣本熵和極端學習機的超短期風電功率組合預測模型. 中國電機工程學報, 2013, 33(25):33 doi: 10.13334/j.0258-8013.pcsee.2013.25.012
Zhang X Q, Liang J, Zhang X, et al. Combined model for ultra short-term wind power prediction based on sample entropy and extreme learning machine. Proc CSEE, 2013, 33(25): 33 doi: 10.13334/j.0258-8013.pcsee.2013.25.012
|
[25] |
Liu Y J, Wang B H, Li R P, et al. Relapse risk prediction for children with henoch-sch?nlein purpura based on GA?SVM. Int J Bioautomation, 2020, 24(2): 117 doi: 10.7546/ijba.2020.24.2.000608
|
[26] |
Pinedo-Sánchez L A, Mercado-Ravell D A, Carballo-Monsivais C A. Vibration analysis in bearings for failure prevention using CNN. J Braz Soc Mech Sci Eng, 2020, 42(12): 1
|
[27] |
馬云飛, 賈希勝, 白華軍, 等. 基于一維CNN參數優化的壓縮振動信號故障診斷. 系統工程與電子技術, 2020, 42(9):1911 doi: 10.3969/j.issn.1001-506X.2020.09.05
Ma Y F, Jia X S, Bai H J, et al. Fault diagnosis of compressed vibration signal based on 1-dimensional CNN with optimized parameters. Syst Eng Electron, 2020, 42(9): 1911 doi: 10.3969/j.issn.1001-506X.2020.09.05
|
[28] |
趙小強, 張亞洲. 利用改進卷積神經網絡的滾動軸承變工況故障診斷方法. 西安交通大學學報, 2021, 55(12):108 doi: 10.7652/xjtuxb202112013
Zhao X Q, Zhang Y Z. Improved CNN-based fault diagnosis method for rolling bearings under variable working conditions. J Xi’an Jiaotong Univ, 2021, 55(12): 108 doi: 10.7652/xjtuxb202112013
|