Citation: | LI Zhen-lei, LI Na, YANG Fei, SOBOLEV Aleksei, SONG Da-zhao, WANG Hong-lei, NA Ran, CAO Ya-li. Applying feature extraction of acoustic emission and machine learning for coal failure forecasting[J]. Chinese Journal of Engineering, 2023, 45(1): 19-30. doi: 10.13374/j.issn2095-9389.2022.02.07.003 |
[1] |
李長洪, 卜磊, 魏曉明, 等. 深部開采安全機理及災害防控現狀與態勢分析. 工程科學學報, 2017, 39(8):1129
Li C H, Bu L, Wei X M, et al. Current status and future trends of deep mining safety mechanism and disaster prevention and control. Chin J Eng, 2017, 39(8): 1129
|
[2] |
李夕兵, 宮鳳強. 基于動靜組合加載力學試驗的深部開采巖石力學研究進展與展望. 煤炭學報, 2021, 46(3):846
Li X B, Gong F Q. Research progress and prospect of deep mining rock mechanics based on coupled static-dynamic loading testing. J China Coal Soc, 2021, 46(3): 846
|
[3] |
劉志強, 宋朝陽, 紀洪廣, 等. 深部礦產資源開采礦井建設模式及其關鍵技術. 煤炭學報, 2021, 46(3):826
Liu Z Q, Song Z Y, Ji H G, et al. Construction mode and key technology of mining shaft engineering for deep mineral resources. J China Coal Soc, 2021, 46(3): 826
|
[4] |
齊慶新, 潘一山, 舒龍勇, 等. 煤礦深部開采煤巖動力災害多尺度分源防控理論與技術架構. 煤炭學報, 2018, 43(7):1801
Qi Q X, Pan Y S, Shu L Y, et al. Theory and technical framework of prevention and control with different sources in multi-scales for coal and rock dynamic disasters in deep mining of coal mines. J China Coal Soc, 2018, 43(7): 1801
|
[5] |
何學秋, 竇林名, 牟宗龍, 等. 煤巖沖擊動力災害連續監測預警理論與技術. 煤炭學報, 2014, 39(8):1485
He X Q, Dou L M, Mu Z L, et al. Continuous monitoring and warning theory and technology of rock burst dynamic disaster of coal. J China Coal Soc, 2014, 39(8): 1485
|
[6] |
Li Z L, He S Q, Song D Z, et al. Microseismic temporal-spatial precursory characteristics and early warning method of rockburst in steeply inclined and extremely thick coal seam. Energies, 2021, 14(4): 1186 doi: 10.3390/en14041186
|
[7] |
婁全, 何學秋, 宋大釗, 等. 基于全波形的煤樣單軸壓縮破壞聲電時頻特征. 工程科學學報, 2019, 41(7):874
Lou Q, He X Q, Song D Z, et al. Time-frequency characteristics of acoustic-electric signals induced by coal fracture under uniaxial compression based on full-waveform. Chin J Eng, 2019, 41(7): 874
|
[8] |
郭敬遠, 張玉柱. 煤單軸壓縮破壞過程聲發射特征分析. 煤炭技術, 2021, 40(4):129
Guo J Y, Zhang Y Z. Analysis on acoustic emission characteristics of coal under uniaxial compression. Coal Technol, 2021, 40(4): 129
|
[9] |
劉娟紅, 趙力, 宋少民, 等. 混凝土硫酸鹽腐蝕損傷的聲波與聲發射變化特征及機理. 工程科學學報, 2016, 38(8):1075
Liu J H, Zhao L, Song S M, et al. Ultrasonic velocity and acoustic emission properties of concrete eroded by sulfate and its damage mechanism. Chin J Eng, 2016, 38(8): 1075
|
[10] |
張進, 柴孟瑜, 項靖海, 等. 基于聲發射監測的316LN不銹鋼的疲勞損傷評價. 工程科學學報, 2018, 40(4):461
Zhang J, Chai M Y, Xiang J H, et al. Fatigue damage evaluation of 316LN stainless steel using acoustic emission monitoring. Chin J Eng, 2018, 40(4): 461
|
[11] |
Jin P J, Wang E Y, Song D Z. Study on correlation of acoustic emission and plastic strain based on coal-rock damage theory. Geomech Eng, 2017, 12(4): 627 doi: 10.12989/gae.2017.12.4.627
|
[12] |
鄧緒彪, 劉遠征, 邢礦, 等. 基于聲發射時空演化的巖石全應力-應變曲線階段特征分析. 巖石力學與工程學報, 2018, 37(Suppl 2): 4086
Deng X B, Liu Y Z, Xing K, et al. Analysis based on AE space-time evolution characteristics for stage division of whole stress-strain curve of rock. Chin J Rock Mech Eng, 2018, 37(Suppl 2): 4086
|
[13] |
任建喜, 景帥, 張琨. 沖擊傾向性煤巖動靜載下破壞機理及聲發射特性研究. 煤炭科學技術, 2021, 49(3):57
Ren J X, Jing S, Zhang K. Study on failure mechanism and acoustic emission characteristics of outburst proneness coal rock under dynamic and static loading. Coal Sci Technol, 2021, 49(3): 57
|
[14] |
紀洪廣, 穆楠楠, 張月征. 沖擊地壓事件AE與壓力耦合前兆特征分析. 煤炭學報, 2013, 38(Suppl 1): 1
Ji H G, Mu N N, Zhang Y Z. Analysis on precursory characteristics of coupled acoustic emission and pressure for rock burst events. J China Coal Soc, 2013, 38(Suppl 1): 1
|
[15] |
Chelali F Z, Djeradi A. Text dependant speaker recognition using MFCC, LPC and DWT. Int J Speech Technol, 2017, 20(3): 725 doi: 10.1007/s10772-017-9441-1
|
[16] |
Deshwal D, Sangwan P, Kumar D. Feature extraction methods in language identification: A survey. Wireless Pers Commun, 2019, 107(4): 2071 doi: 10.1007/s11277-019-06373-3
|
[17] |
Mei Q P, Gül M, Boay M. Indirect health monitoring of bridges using Mel-frequency cepstral coefficients and principal component analysis. Mech Syst Signal Process, 2019, 119: 523 doi: 10.1016/j.ymssp.2018.10.006
|
[18] |
江鶯, 俞銘津, 張夢琦. 基于BP神經網絡的電除塵火花放電識別. 信息與控制, 2019, 48(6):754
Jiang Y, Yu M J, Zhang M Q. Spark discharge identification of electrostatic dust removal based on the back-propagation neural network. Inf Control, 2019, 48(6): 754
|
[19] |
Wang H L, Song D Z, Li Z L, et al. Acoustic emission characteristics of coal failure using automatic speech recognition methodology analysis. Int J Rock Mech Min Sci, 2020, 136: 104472 doi: 10.1016/j.ijrmms.2020.104472
|
[20] |
裴艷宇, 楊小彬, 傳金平, 等. 一維卷積神經網絡特征提取下微震能級時序預測. 工程科學學報, 2021, 43(7):1003
Pei Y Y, Yang X B, Chuan J P, et al. Time series prediction of microseismic energy level based on feature extraction of onedimensional convolutional neural network. Chin J Eng, 2021, 43(7): 1003
|
[21] |
何正祥, 彭平安, 廖智勤. 基于梅爾倒譜系數的礦山復雜微震信號自動識別分類方法. 中國安全生產科學技術, 2018, 14(12):41
He Z X, Peng P G, Liao Z Q. An automatic identification and classification method of complex microseismic signals in mines based on Mel-frequency cepstral coefficients. J Saf Sci Technol, 2018, 14(12): 41
|
[22] |
解滔, 鄭曉東, 張?. 基于線性預測倒譜系數的地震相分析. 地球物理學報, 2016, 59(11):4266 doi: 10.6038/cjg20161127
Xie T, Zheng X D, Zhang Y. Seismic facies analysis based on linear prediction cepstrum coefficients. Chin J Geophys, 2016, 59(11): 4266 doi: 10.6038/cjg20161127
|
[23] |
陳潤航, 黃漢明, 柴慧敏. 地震和爆破事件源波形信號的卷積神經網絡分類研究. 地球物理學進展, 2018, 33(4):1331 doi: 10.6038/pg2018BB0326
Chen R H, Huang H M, Chai H M. Study on the discrimination of seismic waveform signals between earthquake and explosion events by convolutional neural network. Prog Geophys, 2018, 33(4): 1331 doi: 10.6038/pg2018BB0326
|
[24] |
Davis S, Mermelstein P. Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences. IEEE Trans Acoust Speech Signal Process, 1980, 28(4): 357 doi: 10.1109/TASSP.1980.1163420
|
[25] |
武夢婷, 陳秋松, 齊沖沖. 基于機器學習的邊坡安全穩定性評價及防護措施. 工程科學學報, 2022, 44(2):180
Wu M T, Chen Q S, Qi C C. Slope safety, stability evaluation, and protective measures based on machine learning. Chin J Eng, 2022, 44(2): 180
|
[26] |
李博. 機器學習實踐應用. 北京: 人民郵電出版社, 2017
Li B. Practical Application of Machine Learning. Beijing: Posts & Telecom Press, 2017
|
[27] |
余東昌, 趙文芳, 聶凱, 等. 基于LightGBM算法的能見度預測模型. 計算機應用, 2021, 41(4):1035
Yu D C, Zhao W F, Nie K, et al. Visibility forecast model based on LightGBM algorithm. J Comput Appl, 2021, 41(4): 1035
|
[28] |
周志華. 機器學習. 北京: 清華大學出版社, 2016
Zhou Z H. Machine Learning. Beijing: Tsinghua University Press, 2016
|
[29] |
Jung Y. Multiple predicting K-fold cross-validation for model selection. J Nonparametric Stat, 2018, 30(1): 197 doi: 10.1080/10485252.2017.1404598
|
[30] |
Rodriguez J D, Perez A, Lozano J A. Sensitivity analysis of k-fold cross validation in prediction error estimation. IEEE Trans Pattern Anal Mach Intell, 2010, 32(3): 569 doi: 10.1109/TPAMI.2009.187
|
[31] |
Qi C C, Fourie A, Du X H, et al. Prediction of open stope hangingwall stability using random forests. Nat Hazards, 2018, 92(2): 1179 doi: 10.1007/s11069-018-3246-7
|
[32] |
劉弘歷, 武森, 魏桂英, 等. 基于深度神經網絡的點擊率預測模型. 工程科學學報,https://doi.org/10.13374/j.issn2095-9389.2021.03.23.002
Liu H L, Wu S, Wei G Y, et al. Click-through rate prediction model based on a deep neural network. Chin J Eng,https://doi.org/10.13374/j.issn2095-9389.2021.03.23.002
|
[33] |
Xue Y G, Bai C H, Qiu D H, et al. Predicting rockburst with database using particle swarm optimization and extreme learning machine. Tunn Undergr Space Technol, 2020, 98: 103287 doi: 10.1016/j.tust.2020.103287
|