<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 45 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
WU Si-kan, XIAO Bin, WANG Xin, ZHANG Biao, WANG Bo, SONG Yong-yi. Simulation and optimization of temperature control and industrial design of hydrogen production of biomass via microwaves[J]. Chinese Journal of Engineering, 2023, 45(4): 673-680. doi: 10.13374/j.issn2095-9389.2022.01.27.001
Citation: WU Si-kan, XIAO Bin, WANG Xin, ZHANG Biao, WANG Bo, SONG Yong-yi. Simulation and optimization of temperature control and industrial design of hydrogen production of biomass via microwaves[J]. Chinese Journal of Engineering, 2023, 45(4): 673-680. doi: 10.13374/j.issn2095-9389.2022.01.27.001

Simulation and optimization of temperature control and industrial design of hydrogen production of biomass via microwaves

doi: 10.13374/j.issn2095-9389.2022.01.27.001
More Information
  • Corresponding author: E-mail: wusikan.fshy@sinopec.com
  • Received Date: 2022-01-27
    Available Online: 2022-04-01
  • Publish Date: 2023-04-01
  • Hydrogen production of biomass via microwaves is an efficient, rapid, and environmentally friendly chemical engineering technology. Lignin is the only renewable aromatic hydrocarbon resource in the nature, and thus, the lignin-based forest biomass, which has the advantages of low sulfur, is a good raw material for hydrogen production. However, the microwave hot spot effect restricts the industrial application of hydrogen production by microwave. In this study, the reactor was carried out based on the penetration depth of biomass under different microwave frequencies was designed by modeling. Orthogonal design simulation, CFD, and HYSYS were used to obtain the distribution of temperature field with different microwave power density, the radius of biomass particles, bulk density, and the coefficient of variation. Based on the results, the optimal microwave power density was 30 W·g–1, the optimal radius of biomass particles was 4 mm, and the optimal bulk density was 800 kg·m–3, at which a favorable uniform temperature field was achieved, and its coefficient of variation was only 0.009, less than the standard value of 0.01. Then, to reduce energy consumption and improve product economy, the Computational Fluid Dynamics (CFD) method was used to analyze the cloud image of hydrogen production with different height to diameter ratio of the reactor. It was found that when the height to diameter ratio of the reactor was 2.0, the hydrogen-flow could not only fully contact with the falling materials, but also achieve thermal energy circulation by using its own high temperature. Finally, the industrial process of hydrogen production of biomass via microwave was added into HYSYS, and the operating parameters of the maximum hydrogen yield of the 10000-ton industrial device were simulated and optimized. In the reforming reaction, by adding steam in the mid-piece and the end-piece, the production yield of hydrogen can be maximized and the temperature of the reactor can be maintained continuously after the heat energy of hydrogen was recovered. Under the conditions optimized, when the mid-piece and end-piece fluxes of steam were 290 and 1230 m3·h–1, respectively, a favorable hydrogen production of biomass was achieved. The output of hydrogen, the mole fraction and the yield of hydrogen production were 922.98 m3·h–1, 0.4781 and 82.49%, respectively. Moreover, the hydrogen product can reach the high standard of 6.592 g hydrogen/ 100 g biomass, which was far superior to the industry level.

     

  • loading
  • [1]
    王安杰, 王瑤, 遇治權, 等. 生物質油提質加氫脫氧催化劑研究進展. 大連理工大學學報, 2016, 56(3):321 doi: 10.7511/dllgxb201603016

    Wang A J, Wang Y, Yu Z Q, et al. Advances in hydrodeoxygenation catalysts for upgrading bio-oils. J Dalian Univ Technol, 2016, 56(3): 321 doi: 10.7511/dllgxb201603016
    [2]
    顏蓓蓓, 王建, 劉彬, 等. 生物油金屬水熱原位加氫提質技術研究進展. 化工學報, 2021, 72(4):1783

    Yan B B, Wang J, Liu B, et al. Research progress of bio-oil metal hydrothermal in situ hydrogenation technology. CIESC J, 2021, 72(4): 1783
    [3]
    顧帥, 楊洪雪, 苗瑋, 等. 生物油精制技術研究進展. 林產化學與工業, 2012, 32(2):55

    Gu S, Yang H X, Miao W, et al. Progress in bio-oil refining technology. Chem Ind For Prod, 2012, 32(2): 55
    [4]
    Demirba? A. Relationships between lignin contents and heating values of biomass. Energy Convers Manag, 2001, 42(2): 183 doi: 10.1016/S0196-8904(00)00050-9
    [5]
    ?ukajtis R, Ho?owacz I, Kucharska K, et al. Hydrogen production from biomass using dark fermentation. Renew Sustain Energy Rev, 2018, 91: 665 doi: 10.1016/j.rser.2018.04.043
    [6]
    Show K Y, Yan Y G, Ling M, et al. Hydrogen production from algal biomass-Advances, challenges and prospects. Bioresour Technol, 2018, 257: 290 doi: 10.1016/j.biortech.2018.02.105
    [7]
    Li G X, Wang S, Zhao J G, et al. Life cycle assessment and techno-economic analysis of biomass-to-hydrogen production with methane tri-reforming. Energy, 2020, 199: 117488 doi: 10.1016/j.energy.2020.117488
    [8]
    方向晨, 張忠清, 翁延博, 等. 煤炭的微波干餾技術研究進展. 化工進展, 2013, 32(8):1725

    Fang X C, Zhang Z Q, Weng Y B, et al. Research progress of microwave pyrolysis technology for coal. Chem Ind Eng Prog, 2013, 32(8): 1725
    [9]
    趙闖, 蔣立敬. 煤炭低溫干餾微波加熱技術的研究進展. 當代化工, 2013, 42(12):1706 doi: 10.3969/j.issn.1671-0460.2013.12.032

    Zhao C, Jiang L J. Research progress in microwave pyrolysis for coal in the low-temperature carbonization. Contemp Chem Ind, 2013, 42(12): 1706 doi: 10.3969/j.issn.1671-0460.2013.12.032
    [10]
    彭金輝, 劉秉國, 張利波, 等. 高溫微波冶金反應器的研究現狀及發展趨勢. 中國有色金屬學報, 2011, 21(10):2607 doi: 10.19476/j.ysxb.1004.0609.2011.10.026

    Peng J H, Liu B G, Zhang L B, et al. Research status and trend of high-temperature microwave metallurgy reactor. Chin J Nonferrous Met, 2011, 21(10): 2607 doi: 10.19476/j.ysxb.1004.0609.2011.10.026
    [11]
    蔡衛權, 李會泉, 張懿. 微波技術在冶金中的應用. 過程工程學報, 2005, 5(2):228 doi: 10.3321/j.issn:1009-606X.2005.02.026

    Cai W Q, Li H Q, Zhang Y. Recent development of microwave radiation application in metallurgical processes. Chin J Process Eng, 2005, 5(2): 228 doi: 10.3321/j.issn:1009-606X.2005.02.026
    [12]
    馮康露, 陳晉, 陳菓, 等. 微波加熱應用于冶金工藝的研究進展. 礦冶, 2018, 27(2):63 doi: 10.3969/j.issn.1005-7854.2018.02.014

    Feng K L, Chen J, Chen G, et al. Application and research progress of microwave heating technology in typical metallurgical process. Min Metall, 2018, 27(2): 63 doi: 10.3969/j.issn.1005-7854.2018.02.014
    [13]
    Taheri-Shakib J, Kantzas A. A comprehensive review of microwave application on the oil shale: Prospects for shale oil production. Fuel, 2021, 305: 121519 doi: 10.1016/j.fuel.2021.121519
    [14]
    Meyer D H, Cox K C, Fatemi F K, et al. Digital communication with Rydberg atoms and amplitude-modulated microwave fields. Appl Phys Lett, 2018, 112(21): 211108 doi: 10.1063/1.5028357
    [15]
    吳淺耶, 張晨曦, 孫康, 等. 一種可溶性卟啉MOF的微波輔助合成及其光催化性能. 化學學報, 2020, 78(7):688 doi: 10.6023/A20050141

    Wu Q Y, Zhang C X, Sun K, et al. Microwave-assisted synthesis and photocatalytic performance of a soluble porphyrinic MOF. Acta Chimica Sin, 2020, 78(7): 688 doi: 10.6023/A20050141
    [16]
    劉樹剛, 鄧文義, 蘇亞欣, 等. 微波輻射下污泥殘渣催化甲烷裂解制氫. 化工進展, 2014, 33(12):3405

    Liu S G, Deng W Y, Su Y X, et al. Microwave-assisted methane decomposition over pyrolysis residue of sewage sludge for hydrogen production. Chem Ind Eng Prog, 2014, 33(12): 3405
    [17]
    Kim D, Kim G, Oh D Y, et al. Enhanced hydrogen production from anaerobically digested sludge using microwave assisted pyrolysis. Fuel, 2022, 314: 123091 doi: 10.1016/j.fuel.2021.123091
    [18]
    Rincón R, Mu?oz J, Morales-Calero F J, et al. Assessment of two atmospheric-pressure microwave plasma sources for H2 production from ethanol decomposition. Appl Energy, 2021, 294: 116948 doi: 10.1016/j.apenergy.2021.116948
    [19]
    黃銘. 微波與顆粒物質相互作用的機理及應用研究[學位論文]. 昆明: 昆明理工大學, 2006

    Huang M. Mechanism and Application of Interaction between Microwave and Granular Materials [Dissertation]. Kunming: Kunming University of Science and Technology, 2006
    [20]
    吳斯侃, 宋永一, 王鑫, 等. 物質介電特性對微波加熱影響研究進展. 當代化工, 2020, 49(9):1987 doi: 10.3969/j.issn.1671-0460.2020.09.035

    Wu S K, Song Y Y, Wang X, et al. Research progress in influence of dielectric properties of materials on microwave heating. Contemp Chem Ind, 2020, 49(9): 1987 doi: 10.3969/j.issn.1671-0460.2020.09.035
    [21]
    Lv S N, Zeng Y J, Wen J, et al. Estimation of penetration depth from soil effective temperature in microwave radiometry. Remote Sens, 2018, 10(4): 519 doi: 10.3390/rs10040519
    [22]
    Meredith R. Engineers' handbook of industrial microwave heating. Power Eng J, 1999, 13(1): 3 doi: 10.1049/pe:19990102
    [23]
    Portis A M. Electromagnetic Fields: Sources and Media. New York: John Wiley & Sons Inc, 1978
    [24]
    Sokolichin A, Eigenberger G, Lapin A, et al. Dynamic numerical simulation of gas-liquid two-phase flows Euler/Euler versus Euler/Lagrange. Chem Eng Sci, 1997, 52(4): 611 doi: 10.1016/S0009-2509(96)00425-3
    [25]
    Senior T B A. Impedance boundary conditions for imperfectly conducting surfaces. Appl sci Res, 1960, 8(1): 418 doi: 10.1007/BF02920074
    [26]
    Hossan M R, Dutta P. Effects of temperature dependent properties in electromagnetic heating. Int J Heat Mass Transf, 2012, 55(13-14): 3412 doi: 10.1016/j.ijheatmasstransfer.2012.02.072
    [27]
    Dressler M, Edwards B J, ?ttinger H C. Macroscopic thermodynamics of flowing polymeric liquids. Rheol Acta, 1999, 38(2): 117 doi: 10.1007/s003970050162
    [28]
    吳逸民, 趙增立, 李海濱, 等. 生物質主要組分低溫熱解研究. 燃料化學學報, 2009, 37(4):427 doi: 10.3969/j.issn.0253-2409.2009.04.008

    Wu Y M, Zhao Z L, Li H B, et al. Low temperature pyrolysis characteristics of major components of biomass. J Fuel Chem Technol, 2009, 37(4): 427 doi: 10.3969/j.issn.0253-2409.2009.04.008
    [29]
    張軍, 范志林, 林曉芬, 徐益謙. 生物質快速熱解過程中產物的在線測定. 東南大學學報(自然科學版), 2005, 35(1):16

    Zhang J, Fan Z L, Lin X F, et al. Online measurement of products during fast pyrolysis of biomass. J Southeast Univ (Nat Sci Ed), 2005, 35(1): 16
    [30]
    李水清, 李愛民, 嚴建華, 等. 生物質廢棄物在回轉窯內熱解研究——Ⅰ. 熱解條件對熱解產物分布的影響. 太陽能學報, 2000, 21(4):333

    Li S Q, Li A M, Yan J H, et al. Pyrolysis of the biomass wastes pyrolysis in a rotary kiln ⅰ: Influences of reaction conditions on pyrolysis product distribution. Acta Energiae Solaris Sin, 2000, 21(4): 333
    [31]
    Bu Q, Lei H W, Ren S J, et al. Phenol and phenolics from lignocellulosic biomass by catalytic microwave pyrolysis. Bioresour Technol, 2011, 102(13): 7004 doi: 10.1016/j.biortech.2011.04.025
    [32]
    Carlson T R, Tompsett G A, Conner W C, et al. Aromatic production from catalytic fast pyrolysis of biomass-derived feedstocks. Top Catal, 2009, 52(3): 241 doi: 10.1007/s11244-008-9160-6
    [33]
    Kostas E T, Durán-Jiménez G, Shepherd B J, et al. Microwave pyrolysis of olive pomace for bio-oil and bio-char production. Chem Eng J, 2020, 387: 123404 doi: 10.1016/j.cej.2019.123404
    [34]
    Zhang J, Tahmasebi A, Omoriyekomwan J E, et al. Direct synthesis of hollow carbon nanofibers on bio-char during microwave pyrolysis of pine nut shell. J Anal Appl Pyrolysis, 2018, 130: 142 doi: 10.1016/j.jaap.2018.01.016
    [35]
    Huang F, Tahmasebi A, Maliutina K, et al. Formation of nitrogen-containing compounds during microwave pyrolysis of microalgae: Product distribution and reaction pathways. Bioresour Technol, 2017, 245: 1067 doi: 10.1016/j.biortech.2017.08.093
    [36]
    Brown C E. Coefficient of Variation. Berlin: Springer Berlin Heidelberg, 1998
    [37]
    Wu S K, Song Y Y, Wang X, et al. Simulation and optimization of heating rate and thermal uniformity of microwave reactor for biomass pyrolysis. Chem Eng Sci, 2022, 250: 117386 doi: 10.1016/j.ces.2021.117386
    [38]
    Jeyapaul R, Shahabudeen P, Krishnaiah K. Quality management research by considering multi-response problems in the Taguchi method - a review. Int J Adv Manuf Technol, 2005, 26(11): 1331
    [39]
    Ranzi E, Debiagi P E A, Frassoldati A. Mathematical modeling of fast biomass pyrolysis and bio-oil formation. note I: Kinetic mechanism of biomass pyrolysis. ACS Sustain Chem Eng, 2017, 5(4): 2867
    [40]
    Ranzi E, Debiagi P E A, Frassoldati A. Mathematical modeling of fast biomass pyrolysis and bio-oil formation. note II: Secondary gas-phase reactions and bio-oil formation. ACS Sustain Chem Eng, 2017, 5(4): 2882
    [41]
    Berdugo Vilches T, Marinkovic J, Seemann M, et al. Comparing active bed materials in a dual fluidized bed biomass gasifier: Olivine, bauxite, quartz-sand, and ilmenite. Energy Fuels, 2016, 30(6): 4848 doi: 10.1021/acs.energyfuels.6b00327
    [42]
    Zhang Z Y, Pang S S. Experimental investigation of biomass devolatilization in steam gasification in a dual fluidised bed gasifier. Fuel, 2017, 188: 628 doi: 10.1016/j.fuel.2016.10.074
    [43]
    Schweitzer D, Gredinger A, Schmid M, et al. Steam gasification of wood pellets, sewage sludge and manure: Gasification performance and concentration of impurities. Biomass Bioenergy, 2018, 111: 308 doi: 10.1016/j.biombioe.2017.02.002
    [44]
    Pfeifer C, Rauch R, Hofbauer H. In-bed catalytic tar reduction in a dual fluidized bed biomass steam gasifier. Ind Eng Chem Res, 2004, 43(7): 1634 doi: 10.1021/ie030742b
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article views (452) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频