Citation: | CHEN Zhen-zhen, CHEN Hong-qiang, HUANG Lei, HAO Nan-jing. Research progress on the intensification of heat transfer by ultrasound[J]. Chinese Journal of Engineering, 2022, 44(12): 2164-2176. doi: 10.13374/j.issn2095-9389.2022.01.24.001 |
[1] |
魏進家, 張永海. 柱狀微結構表面強化沸騰換熱研究綜述. 化工學報, 2016, 67(1):97
Wei J J, Zhang Y H. Review of enhanced boiling heat transfer over micro-pin-finned surfaces. CIESC J, 2016, 67(1): 97
|
[2] |
Japar W M A A, Sidik N A C, Mat S. A comprehensive study on heat transfer enhancement in microchannel heat sink with secondary channel. Int Commun Heat Mass Transf, 2018, 99: 62 doi: 10.1016/j.icheatmasstransfer.2018.10.005
|
[3] |
Binayak D, Jajneswar N, Kumar R S. The role of microchannel geometry selection on heat transfer enhancement in heat sinks: A review. Heat Transf, 2021, 51(2): 1406
|
[4] |
陳真真, 陳洪強, 黃磊, 等. 二氧化硅納米流體強化對流換熱研究進展. 工程科學學報, 2022, 44(4):812
Chen Z Z, Chen H Q, Huang L, et al. Research progress on silica nanofluids for convective heat transfer enhancement. Chin J Eng, 2022, 44(4): 812
|
[5] |
魏進家, 劉斌, 張永海. 常/微重力下微結構表面強化沸騰換熱研究進展. 化工進展, 2019, 38(1):14 doi: 10.16085/j.issn.1000-6613.2018-1133
Wei J J, Liu B, Zhang Y H. Progress in enhanced boiling heat transfer over microstructured surfaces under normal/microgravity. Chem Ind Eng Prog, 2019, 38(1): 14 doi: 10.16085/j.issn.1000-6613.2018-1133
|
[6] |
Deng D X, Zeng L, Sun W. A review on flow boiling enhancement and fabrication of enhanced microchannels of microchannel heat sinks. Int J Heat Mass Transf, 2021, 175: 121332 doi: 10.1016/j.ijheatmasstransfer.2021.121332
|
[7] |
Sidik N A C, Muhamad M N A W, Japar W M A A, et al. An overview of passive techniques for heat transfer augmentation in microchannel heat sink. Int Commun Heat Mass Transf, 2017, 88: 74 doi: 10.1016/j.icheatmasstransfer.2017.08.009
|
[8] |
郭志超, 劉軒, 薛濟來, 等. 超聲對熔鹽電解法制備Al–7Si–Sc合金組織的影響. 工程科學學報, 2019, 41(9):1135
Guo Z C, Liu X, Xue J L, et al. Effects of ultrasound on the microstructure of Al-7Si-Sc alloy prepared via molten salt electrolysis. Chin J Eng, 2019, 41(9): 1135
|
[9] |
劉軒, 郭志超, 薛濟來, 等. 電解制備含鈧鋁合金三元相超聲細化機制. 工程科學學報, 2020, 42(11):1465
Liu X, Guo Z C, Xue J L, et al. Ultrasonic refining mechanism of ternary phase in Al-Sc based alloys prepared through molten salt electrolysis. Chin J Eng, 2020, 42(11): 1465
|
[10] |
Chen Z Z, Shen L, Zhao X, et al. Acoustofluidic micromixers: From rational design to lab-on-a-chip applications. Appl Mater Today, 2022, 26: 101356 doi: 10.1016/j.apmt.2021.101356
|
[11] |
楊延鋒, 姜根山, 于淼, 等. 聲流理論及其傳熱傳質研究現狀與展望. 振動與沖擊, 2021, 40(18):273
Yang Y F, Jiang G S, Yu M, et al. Research status and prospect of acoustic streaming theory and its heat and mass transfer. J Vib Shock, 2021, 40(18): 273
|
[12] |
Legay M, Gondrexon N, Le Person S, et al. Enhancement of heat transfer by ultrasound: Review and recent advances. Int J Chem Eng, 2011, 2011: 670108
|
[13] |
孫寶芝, 姜任秋, 淮秀蘭, 劉登瀛. 聲空化及其強化傳熱技術研究進展. 哈爾濱工程大學學報, 2004, 25(1):19 doi: 10.3969/j.issn.1006-7043.2004.01.004
Sun B Z, Jiang R Q, Huai X L, et al. Development of the research on acoustic cavitation enhancement of heat transfer. J Harbin Eng Univ, 2004, 25(1): 19 doi: 10.3969/j.issn.1006-7043.2004.01.004
|
[14] |
Zhang D W, Jiang E H, Zhou J J, et al. Investigation on enhanced mechanism of heat transfer assisted by ultrasonic vibration. Int Commun Heat Mass Transf, 2020, 115: 104523 doi: 10.1016/j.icheatmasstransfer.2020.104523
|
[15] |
Vainshtein P, Fichman M, Gutfinger C. Acoustic enhancement of heat transfer between two parallel plates. Int J Heat Mass Transf, 1995, 38(10): 1893 doi: 10.1016/0017-9310(94)00299-B
|
[16] |
劉峰, 李學敏. 二維平板內駐波聲流對傳熱的影響. 科學技術與工程, 2016, 16(24):54 doi: 10.3969/j.issn.1671-1815.2016.24.010
Liu F, Li X M. Influence of acoustic streaming on heat transfer between two parallel plates. Sci Technol Eng, 2016, 16(24): 54 doi: 10.3969/j.issn.1671-1815.2016.24.010
|
[17] |
Rahbari I, Cukurel B, Paniagua G. Acoustic pulsation for heat transfer abatement in supersonic channel flow. Phys Fluids, 2021, 33(3): 035104 doi: 10.1063/5.0037078
|
[18] |
Aktas M K, Farouk B, Lin Y Q. Heat transfer enhancement by acoustic streaming in an enclosure. J Heat Transf, 2005, 127(12): 1313 doi: 10.1115/1.2098858
|
[19] |
楊延鋒, 姜根山, 于淼. 換熱管周圍聲流強化對流傳熱的數值模擬. 動力工程學報, 2021, 41(8):650
Yang Y F, Jiang G S, Yu M. Numerical simulation of convective heat transfer enhanced by acoustic streaming around heat exchanger tubes. J Chin Soc Power Eng, 2021, 41(8): 650
|
[20] |
Rulik S, Wróblewski W. A numerical study of the heat transfer intensification using high amplitude acoustic waves. Arch Acoust, 2018, 43(1): 31
|
[21] |
Rulik S, Wróblewski W, Nowak G, et al. Heat transfer intensification using acoustic waves in a cavity. Energy, 2015, 87: 21 doi: 10.1016/j.energy.2015.04.088
|
[22] |
Lemlich R, Hwu C. The effect of acoustic vibration on forced convective heat transfer. Aiche J, 1961, 7: 102 doi: 10.1002/aic.690070124
|
[23] |
Mozurkewich G. Heat transfer from a cylinder in an acoustic standing wave. J Acoust Soc Am, 1995, 98(4): 2209 doi: 10.1121/1.413335
|
[24] |
Hyun S, Lee D R, Loh B G. Investigation of convective heat transfer augmentation using acoustic streaming generated by ultrasonic vibrations. Int J Heat Mass Transf, 2005, 48(3-4): 703 doi: 10.1016/j.ijheatmasstransfer.2004.07.048
|
[25] |
Loh B G, Lee D R. Heat transfer characteristics of acoustic streaming by longitudinal ultrasonic vibration. J Thermophys Heat Transf, 2004, 18(1): 94 doi: 10.2514/1.9156
|
[26] |
Loh B G, Hyun S, Ro P I, et al. Acoustic streaming induced by ultrasonic flexural vibrations and associated enhancement of convective heat transfer. J Acoust Soc Am, 2002, 111(2): 875 doi: 10.1121/1.1433811
|
[27] |
Lee D R, Loh B G. Smart cooling technology utilizing acoustic streaming. IEEE Trans Compon Packag Technol, 2007, 30(4): 691 doi: 10.1109/TCAPT.2007.901756
|
[28] |
Roux S, Fénot M, Lalizel G, et al. Experimental investigation of the flow and heat transfer of an impinging jet under acoustic excitation. Int J Heat Mass Transf, 2011, 54(15-16): 3277 doi: 10.1016/j.ijheatmasstransfer.2011.03.059
|
[29] |
Gau C, Sheu W Y, Shen C H. Impingement cooling flow and heat transfer under acoustic excitations. J Heat Transf, 1997, 119(4): 810 doi: 10.1115/1.2824187
|
[30] |
Komarov S, Hirasawa M. Enhancement of gas phase heat transfer by acoustic field application. Ultrasonics, 2003, 41(4): 289 doi: 10.1016/S0041-624X(02)00454-7
|
[31] |
Cai J, Huai X L, Yan R S, et al. Numerical simulation on enhancement of natural convection heat transfer by acoustic cavitation in a square enclosure. Appl Therm Eng, 2009, 29(10): 1973 doi: 10.1016/j.applthermaleng.2008.09.015
|
[32] |
Kumar V, Azharudeen M, Pothuri C, et al. Heat transfer mechanism driven by acoustic body force under acoustic fields. Phys Rev Fluids, 2021, 6(7): 073501 doi: 10.1103/PhysRevFluids.6.073501
|
[33] |
Li S N, Zhang H N, Cheng J P, et al. A numerical study on heat transfer performance in a straight microchannel heat sink with standing surface acoustic waves. Heat Transf Eng, 2022, 43(3-5): 371 doi: 10.1080/01457632.2021.1874670
|
[34] |
Das P K, Snider A D, Bhethanabotla V R. Acoustothermal heating in surface acoustic wave driven microchannel flow. Phys Fluids, 2019, 31(10): 106106 doi: 10.1063/1.5121307
|
[35] |
Cai J, Huai X L, Liang S Q, et al. Augmentation of natural convective heat transfer by acoustic cavitation. Front Energy Power Eng China, 2010, 4(3): 313 doi: 10.1007/s11708-009-0064-3
|
[36] |
Fand R M. The influence of acoustic vibrations on heat transfer by natural convection from a horizontal cylinder to water. J Heat Transf, 1965, 87(2): 309 doi: 10.1115/1.3689095
|
[37] |
Richardson P D. Heat transfer from a circular cylinder by acoustic streaming. J Fluid Mech, 1967, 30(2): 337 doi: 10.1017/S0022112067001466
|
[38] |
周定偉, 劉登瀛. 聲空化場強化單相對流傳熱的實驗研究. 自然科學進展, 2002, 12(5):553 doi: 10.3321/j.issn:1002-008X.2002.05.021
Zhou D W, Liu D Y. Experimental study on enhancement of single-phase convective heat transfer by acoustic cavitation field. Prog Nat Sci, 2002, 12(5): 553 doi: 10.3321/j.issn:1002-008X.2002.05.021
|
[39] |
周定偉, 劉登瀛, 胡學功. 聲空化場下單相對流傳熱的實驗研究. 工程熱物理學報, 2002, 23(1):82 doi: 10.3321/j.issn:0253-231X.2002.01.023
Zhou D W, Liu D Y, Hu X G. Experimental study of single-phase convection heat transfer in acoustic cavitation field. J Eng Thermophys, 2002, 23(1): 82 doi: 10.3321/j.issn:0253-231X.2002.01.023
|
[40] |
Dhanalakshmi N P, Nagarajan R, Sivagaminathan N, et al. Acoustic enhancement of heat transfer in furnace tubes. Chem Eng Process Process Intensif, 2012, 59: 36 doi: 10.1016/j.cep.2012.05.001
|
[41] |
Nomura S, Yamamoto A, Murakami K. Ultrasonic heat transfer enhancement using a horn-type transducer. Jpn J Appl Phys Part 1 Regul Pap Short Notes Rev Pap, 2002, 41(5 B): 3217
|
[42] |
Xian H, Liu D, Shang F, et al. Experimental study on the heat transfer enhancement of oscillating-flow heat pipe by acoustic cavitation. Dry Technol, 2009, 27(4): 542 doi: 10.1080/07373930802715666
|
[43] |
冼海珍, 劉登瀛, 商福民, 等. 聲空化強化振蕩流熱管傳熱實驗研究. 工程熱物理學報, 2007, 28(3):508 doi: 10.3321/j.issn:0253-231X.2007.03.047
Xian H Z, Liu D Y, Shang F M, et al. Experimental investigation on heat transfer enhancement of oscillating-flow heat pipe by acoustic cavitation. J Eng Thermophys, 2007, 28(3): 508 doi: 10.3321/j.issn:0253-231X.2007.03.047
|
[44] |
陳傳寶, 冼海珍, 劉登瀛, 等. 聲空化外場對振蕩流熱管傳熱性能的影響. 工程熱物理學報, 2009, 30(5):831 doi: 10.3321/j.issn:0253-231X.2009.05.030
Chen C B, Xian H Z, Liu D Y, et al. The heat transfer characteristics of oscillating-flow heat pipe by external acoustic cavitation field. J Eng Thermophys, 2009, 30(5): 831 doi: 10.3321/j.issn:0253-231X.2009.05.030
|
[45] |
Monnot A, Boldo P, Gondrexon N, et al. Enhancement of cooling rate by means of high frequency ultrasound. Heat Transf Eng, 2007, 28(1): 3 doi: 10.1080/01457630600985485
|
[46] |
Bulliard-Sauret O, Ferrouillat S, Vignal L, et al. Heat transfer enhancement using 2 MHz ultrasound. Ultrason Sonochemistry, 2017, 39: 262 doi: 10.1016/j.ultsonch.2017.04.021
|
[47] |
Rahimi M, Dehbani M, Abolhasani M. Experimental study on the effects of acoustic streaming of high frequency ultrasonic waves on convective heat transfer: Effects of transducer position and wave interference. Int Commun Heat Mass Transf, 2012, 39(5): 720 doi: 10.1016/j.icheatmasstransfer.2012.03.013
|
[48] |
Stewart E, Stewart P, Watson A. Thermo-acoustic oscillations in forced convection heat transfer to supercritical pressure water. Int J Heat Mass Transf, 1973, 16(2): 257 doi: 10.1016/0017-9310(73)90055-0
|
[49] |
Tajik B, Abbassi A, Saffar-Avval M, et al. Heat transfer enhancement by acoustic streaming in a closed cylindrical enclosure filled with water. Int J Heat Mass Transf, 2013, 60: 230 doi: 10.1016/j.ijheatmasstransfer.2012.12.066
|
[50] |
Pan H, Bi Q C, Liu Z H, et al. Experimental investigation on thermo-acoustic instability and heat transfer of supercritical endothermic hydrocarbon fuel in a mini tube. Exp Therm Fluid Sci, 2018, 97: 109 doi: 10.1016/j.expthermflusci.2018.03.017
|
[51] |
Wong S W, Chon W Y. Effects of ultrasonic vibrations on heat transfer to liquids by natural convection and by boiling. AIChE J, 1969, 15(2): 281 doi: 10.1002/aic.690150229
|
[52] |
李長達, 張偉, 劉廣林, 等. 超聲波對池沸騰換熱的影響. 節能技術, 2016, 34(6):527 doi: 10.3969/j.issn.1002-6339.2016.06.010
Li C D, Zhang W, Liu G L, et al. Effect of ultrasound on pool boiling heat transfer. Energy Conserv Technol, 2016, 34(6): 527 doi: 10.3969/j.issn.1002-6339.2016.06.010
|
[53] |
Lin W X, Xiao J, Su G C, et al. Ultrasound-assisted enhancement of heat transfer in immersed coil heat exchangers: Effects of acoustic intensity and ambient fluid properties. Int Commun Heat Mass Transf, 2021, 129: 105735 doi: 10.1016/j.icheatmasstransfer.2021.105735
|
[54] |
Zhou D W. Heat transfer enhancement of copper nanofluid with acoustic cavitation. Int J Heat Mass Transf, 2004, 47(14-16): 3109 doi: 10.1016/j.ijheatmasstransfer.2004.02.018
|
[55] |
周定偉, 劉登瀛, 馬重芳. 聲空化場下納米顆粒對沸騰傳熱影響的實驗研究. 熱能動力工程, 2001, 16(6):594 doi: 10.3969/j.issn.1001-2060.2001.06.006
Zhou D W, Liu D Y, Ma C F. Experimental study of the effect of nanometer granule on boiling heat transfer in an acoustic cavitation field. J Eng Therm Energy Power, 2001, 16(6): 594 doi: 10.3969/j.issn.1001-2060.2001.06.006
|
[56] |
Zhou D W, Liu D Y. Heat transfer characteristics of nanofluids in an acoustic cavitation field. Heat Transf Eng, 2004, 25(6): 54 doi: 10.1080/01457630490486274
|
[57] |
周定偉, 劉登瀛, 胡學功, 等. 聲空化場下水平圓管沸騰換熱的實驗研究. 工程熱物理學報, 2002, 23(S1): 177
Zhou D W, Liu D Y, Hu X G, et al. Experimental study on boiling heat transfer from horizontal circular tube in an acoustic cavitation field. J Eng Thermophys, 2002, 23(Sup 1): 177
|
[58] |
Zhou D W, Liu D Y. Boiling heat transfer in an acoustic cavitation field. Chin J Chem Eng, 2002, 10(5): 625
|
[59] |
周定偉, 劉登瀛, 胡學功, 等. 聲空化場下浸沒在多孔介質中水平圓管傳熱的實驗研究. 熱能動力工程, 2002, 17(6):580 doi: 10.3969/j.issn.1001-2060.2002.06.010
Zhou D W, Liu D Y, Hu X G, et al. Experimental research on the heat transfer in a horizontal circular tube immersed in a porous medium under the action of an acoustic cavitation field. J Eng Therm Energy Power, 2002, 17(6): 580 doi: 10.3969/j.issn.1001-2060.2002.06.010
|
[60] |
Zhou D W, Liu D Y, Hu X G, et al. Effect of acoustic cavitation on boiling heat transfer. Exp Therm Fluid Sci, 2002, 26(8): 931 doi: 10.1016/S0894-1777(02)00201-7
|
[61] |
周定偉. 聲空化場強化沸騰傳熱機理. 化工學報, 2002, 53(5):538 doi: 10.3321/j.issn:0438-1157.2002.05.021
Zhou D W. Mechanism of boiling heat transfer intensified by acoustic cavitation field. J Chem Ind Eng (China)
|
[62] |
孫寶芝, 姜任秋, 淮秀蘭, 等. 聲空化強化沸騰換熱的試驗觀察與分析. 機械工程學報, 2009, 45(1):73 doi: 10.3901/JME.2009.01.073
Sun B Z, Jiang R Q, Huai X L, et al. Experimental observation and analysis of enhancing boiling heat transfer with acoustic cavitation. Chin J Mech Eng, 2009, 45(1): 73 doi: 10.3901/JME.2009.01.073
|
[63] |
Baffigi F, Bartoli C. Influence of the ultrasounds on the heat transfer in single phase free convection and in saturated pool boiling. Exp Therm Fluid Sci, 2012, 36: 12 doi: 10.1016/j.expthermflusci.2011.07.012
|
[64] |
Wan Z P, Duan J C, Wang X W, et al. Saturated boiling heat transfer under ultrasound. Int Commun Heat Mass Transf, 2020, 115: 104511 doi: 10.1016/j.icheatmasstransfer.2020.104511
|
[65] |
Hyun Y, Lee K Y, Jang D, et al. Bubble removal by electric and acoustic actuation for heat transfer enhancement. AIP Adv, 2021, 11(8): 085030 doi: 10.1063/5.0042503
|
[66] |
Quintana-Buil G, González-Cinca R. Acoustic effects on heat transfer on the ground and in microgravity conditions. Int J Heat Mass Transf, 2021, 178: 121627 doi: 10.1016/j.ijheatmasstransfer.2021.121627
|
[67] |
張佳, 呂友軍, 張西民, 等. 超聲作用下不同粗糙度表面沸騰換熱實驗研究. 工程熱物理學報, 2010, 31(9):1524
Zhang J, Lü Y J, Zhang X M, et al. Effect of surface roughness on pool boiling heat transfer in an ultrasonic field. J Eng Thermophys, 2010, 31(9): 1524
|
[68] |
張佳, 白博峰. 超聲波對池沸騰換熱影響. 工程熱物理學報, 2011, 32(6):961
Zhang J, Bai B F. Pool boiling under ultrasonic wave. J Eng Thermophys, 2011, 32(6): 961
|
[69] |
Boziuk T R, Smith M K, Glezer A. Enhanced boiling heat transfer on plain and featured surfaces using acoustic actuation. Int J Heat Mass Transf, 2017, 108: 181 doi: 10.1016/j.ijheatmasstransfer.2016.11.071
|
[70] |
Douglas Z, Boziuk T R, Smith M K, et al. Acoustically enhanced boiling heat transfer. Phys Fluids, 2012, 24(5): 052105 doi: 10.1063/1.4721669
|
[71] |
Li B, Han X D, Wan Z P, et al. Influence of ultrasound on heat transfer of copper tubes with different surface characteristics in sub-cooled boiling. Appl Therm Eng, 2016, 92: 93 doi: 10.1016/j.applthermaleng.2015.09.069
|
[72] |
Sitter J S, Snyder T J, Chung J N, et al. Terrestrial and microgravity pool boiling heat transfer from a wire in an acoustic field. Int J Heat Mass Transf, 1998, 41(14): 2143 doi: 10.1016/S0017-9310(97)00344-X
|
[73] |
Moehrle R E, Chung J N. Pool boiling heat transfer driven by an acoustic standing wave in terrestrial gravity and microgravity. Int J Heat Mass Transf, 2016, 93: 322 doi: 10.1016/j.ijheatmasstransfer.2015.09.030
|
[74] |
Fogg D W, Goodson K E. Bubble-induced water hammer and cavitation in microchannel flow boiling. J Heat Transf, 2009, 131(12): 121006 doi: 10.1115/1.3216381
|
[75] |
Shariff Y M. Acoustics vibrations to enhance flow boiling in micro channels. Int J Therm Environ Eng (IJTEE)
|
[76] |
Qu X P, Qiu H H. Thermal bubble dynamics under the effects of an acoustic field. Heat Transf Eng, 2011, 32(7-8): 636 doi: 10.1080/01457632.2010.509757
|
[77] |
Zhou J Y, Luo X P, Li C Z, et al. Flow boiling heat transfer enhancement under ultrasound field in minichannel heat sinks. Ultrason Sonochemistry, 2021, 78: 105737 doi: 10.1016/j.ultsonch.2021.105737
|
[78] |
Yu F, Luo X P, He B L, et al. Experimental investigation of flow boiling heat transfer enhancement under ultrasound fields in a minichannel heat sink. Ultrason Sonochem, 2021, 70: 105342 doi: 10.1016/j.ultsonch.2020.105342
|