<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 9
Sep.  2022
Turn off MathJax
Article Contents
WANG Li-chao, TIAN Jia-long, REN Ji, JIANG Cheng-gang, YOU Zhi-min, JIANG Zhou-hua. Effect of Ce/Mg addition on the cleanliness of M50-bearing steel[J]. Chinese Journal of Engineering, 2022, 44(9): 1507-1515. doi: 10.13374/j.issn2095-9389.2022.01.15.001
Citation: WANG Li-chao, TIAN Jia-long, REN Ji, JIANG Cheng-gang, YOU Zhi-min, JIANG Zhou-hua. Effect of Ce/Mg addition on the cleanliness of M50-bearing steel[J]. Chinese Journal of Engineering, 2022, 44(9): 1507-1515. doi: 10.13374/j.issn2095-9389.2022.01.15.001

Effect of Ce/Mg addition on the cleanliness of M50-bearing steel

doi: 10.13374/j.issn2095-9389.2022.01.15.001
More Information
  • Corresponding author: E-mail: jiangzh@smm.neu.edu.cn
  • Received Date: 2022-01-15
    Available Online: 2022-04-08
  • Publish Date: 2022-09-01
  • The cleanliness level and nonmetallic inclusion distribution characteristics of M50 aerospace-bearing steel are key factors affecting its quality and service life. The simultaneous addition of Ce–Mg has been proposed in this paper as an innovation to improve cleanliness dramatically. Based on the thermodynamic calculation, the underlying functional mechanism has been revealed. Additionally, the effects of Ce, Mg, and Ce–Mg simultaneous additions on oxygen content, sulfur content, and inclusion distribution characteristics have been analyzed comparatively. The vacuum induction melting process was used to prepare the M50 aerospace-bearing steel ingots. The chemical compositions of experimental steels were acquired using inductively coupled plasma-atomic spectroscopy, Leco TC500 N2/O2 analyzer, CS-3000 carbon/sulfur analyzer, and SPECTROLAB M11 stationary metal analyzer. The statistical distribution characteristics of inclusions were obtained using the image processing software based on optical microscopy images. The composition and morphology of inclusions have been characterized using scanning electron microscopy equipped with energy dispersive spectroscopy. The results indicated that Ce could significantly enhance the efficiency of deoxidation and desulfurization. Preferentially, Ce addition would lead to the formation of Ce2O2S inclusions in the steel. As the oxygen content in liquid steel decreases, Ce could also react with As to form a compound, and this could further purify the molten steel since As has generally been recognized as a harmful element. Meanwhile, Ce would also react with the magnesia–aluminum spinel refractory and cause an increase in the number density of inclusions in the steel. Thus, in comparison to the Ce-treated steel with higher Ce content, the smallest size and number of inclusions have been obtained in the steel with a total Ce mass fraction of 0.018%. In addition to deoxidation and desulfurization, Mg addition could also inhibit the reaction between Ce and magnesia–aluminum spinel refractories. The thermodynamic calculation results demonstrated that the dissolved [Ce] in the molten steel could react with the magnesia–aluminum spinel refractory material, resulting in an increase in the concentration of [O] and [Al] in the molten steel, while this reaction could significantly be inhibited by the dissolved [Mg] in the molten steel. In summary, Ce–Mg synergistic treatment could significantly decrease the number and size of inclusions in the steel. Based on this novel technology, the ultraclean M50 aerospace-bearing steel with an oxygen mass fraction of 0.00075% has successfully been obtained. This work has opened a new insight into the deoxidation mechanism of Ce–Mg synergistic treatment and provided a novel method to further improve the cleanliness of molten steel during the vacuum induction melting process.

     

  • loading
  • [1]
    李昭昆, 雷建中, 徐海峰, 等. 國內外軸承鋼的現狀與發展趨勢. 鋼鐵研究學報, 2016, 28(3):1 doi: 10.13228/j.boyuan.issn1001-0963.20150345

    Li Z K, Lei J Z, Xu H F, et al. Current status and development trend of bearing steel in China and abroad. J Iron Steel Res, 2016, 28(3): 1 doi: 10.13228/j.boyuan.issn1001-0963.20150345
    [2]
    劉雅政, 周樂育, 張朝磊, 等. 重大裝備用高品質軸承用鋼的發展及其質量控制. 鋼鐵, 2013, 48(8):1

    Liu Y Z, Zhou L Y, Zhang C L, et al. Development and quality control of bearing steel for heavy equipment. Iron Steel, 2013, 48(8): 1
    [3]
    姜韶峰, 王小龍, 袁玉同. 精密機床軸承的特點與應用技術. 軸承, 2011(7):57 doi: 10.3969/j.issn.1000-3762.2011.07.021

    Jiang S F, Wang X L, Yuan Y T. Characteristics and application technology of precision machine tool bearings. Bearing, 2011(7): 57 doi: 10.3969/j.issn.1000-3762.2011.07.021
    [4]
    葉軍. 高速鐵路軸承國產化現曙光. 機械制造, 2014, 52(6):19

    Ye J. The localization of high-speed railway bearings is now dawning. Machinery, 2014, 52(6): 19
    [5]
    李華文, 張寶玲, 陳磊. 趙振業院士訪談. 航空發動機, 2009, 35(3):65

    Li H W, Zhang B L, Chen L. Interview of academician Zhao Zhen-ye. Aeroengine, 2009, 35(3): 65
    [6]
    雍岐龍, 董瀚, 劉正東, 等. 先進機械制造用結構鋼的發展. 金屬熱處理, 2010, 35(1):2 doi: 10.13251/j.issn.0254-6051.2010.01.025

    Yong Q L, Dong H, Liu Z D, et al. Recent progress in advanced machinery structure steels. Heat Treat Met, 2010, 35(1): 2 doi: 10.13251/j.issn.0254-6051.2010.01.025
    [7]
    Li X, Jiang Z H, Geng X, et al. Evolution mechanism of inclusions in H13 steel with rare earth magnesium alloy addition. ISIJ Int, 2019, 59(9): 1552 doi: 10.2355/isijinternational.ISIJINT-2019-094
    [8]
    Liu Y Q, Wang L J, Chou K. Effect of cerium on the cleanliness of spring steel used in fastener of high-speed railway. J Rare Earths, 2014, 32(8): 759 doi: 10.1016/S1002-0721(14)60137-X
    [9]
    Kwon S K, Kong Y M, Park J H. Effect of Al deoxidation on the formation behavior of inclusions in Ce-added stainless steel melts. Met Mater Int, 2014, 20(5): 959 doi: 10.1007/s12540-014-5022-x
    [10]
    Karasev A, Suito H. Analysis of size distributions of primary oxide inclusions in Fe–10 mass Pct Ni-M (M=Si, Ti, Al, Zr, and Ce) alloy. Metall Mater Trans B, 1999, 30(2): 259 doi: 10.1007/s11663-999-0055-0
    [11]
    Hong S H, Kang S J L, Yoon D N, et al. The reduction of the interfacial segregation of phosphorus and its embrittlement effect by lanthanum addition in a W-Ni-Fe heavy alloy. Metall Mater Trans A, 1991, 22(12): 2969 doi: 10.1007/BF02650256
    [12]
    Wang H P, Xiong L, Zhang L, et al. Investigation of RE-O-S-As inclusions in high carbon steels. Metall Mater Trans B, 2017, 48(6): 2849 doi: 10.1007/s11663-017-1081-y
    [13]
    Takata R, Yang J, Kuwabara M. Characteristics of inclusions generated during Al-Mg complex deoxidation of molten steel. ISIJ Int, 2007, 47(10): 1379 doi: 10.2355/isijinternational.47.1379
    [14]
    Kim H S, Chang C H, Lee H G. Evolution of inclusions and resultant microstructural change with Mg addition in Mn/Si/Ti deoxidized steels. Scr Mater, 2005, 53(11): 1253 doi: 10.1016/j.scriptamat.2005.08.001
    [15]
    Yang C Y, Luan Y K, Li D Z, et al. Effects of rare earth elements on inclusions and impact toughness of high-carbon chromium bearing steel. J Mater Sci Technol, 2019, 35(7): 1298 doi: 10.1016/j.jmst.2019.01.015
    [16]
    Vahed A, Kay D A R. Thermodynamics of rare earths in steelmaking. Metall Mater Trans B, 1976, 7(3): 375 doi: 10.1007/BF02652708
    [17]
    陳家祥. 煉鋼常用圖表數據手冊. 2版. 北京: 冶金工業出版社, 2010

    Chen J X. Data Manual of Common Steelmaking Charts. 2nd Ed. Beijing: Metallurgical Industry Press, 2010
    [18]
    梁英教, 車蔭昌. 無機物熱力學數據手冊. 沈陽: 東北大學出版社, 1993

    Liang Y J, Che Y C. Thermodynamic Data Handbook of Inorganic Materials. Shenyang: Northeast University Press, 1993
    [19]
    劉達, 雷洪, 王天龍, 等. 關于1873K下鐵液中鋁脫氧平衡熱力學的討論. 材料與冶金學報, 2015, 14(2):96 doi: 10.14186/j.cnki.1671-6620.2015.02.005

    Liu D, Lei H, Wang T L, et al. Thermodynamics of deoxidation equilibrium with Al in liquid iron at 1873 K. J Mater Metall, 2015, 14(2): 96 doi: 10.14186/j.cnki.1671-6620.2015.02.005
    [20]
    Itoh H, Hino M, Ban-Ya S. Thermodynamics on the formation of spinel nonmetallic inclusion in liquid steel. Metall Mater Trans B, 1997, 28(5): 953 doi: 10.1007/s11663-997-0023-5
    [21]
    Ueshima Y, Isobe K, Mizoguchi S, et al. Analysis of the rate of crystallization and precipitation of MnS in the resulphurized free-cutting steel. Tetsu-to-Hagane, 1988, 74(3): 465 doi: 10.2355/tetsutohagane1955.74.3_465
    [22]
    Bale C W, Chartrand P, Degterov S A, et al. FactSage thermochemical software and databases. Calphad, 2002, 26(2): 189 doi: 10.1016/S0364-5916(02)00035-4
    [23]
    Bale C W, Bélisle E, Chartrand P, et al. FactSage thermochemical software and databases, 2010-2016. Calphad, 2016, 54: 35 doi: 10.1016/j.calphad.2016.05.002
    [24]
    Ma Q Q, Wu C C, Cheng G G, et al. Characteristic and formation mechanism of inclusions in 2205 duplex stainless steel containing rare earth elements. Mater Today Proc, 2015, 2: S300 doi: 10.1016/j.matpr.2015.05.042
    [25]
    李文超, 林勤, 葉文, 等. 35CrNi3MoV鋼中稀土夾雜物生成的熱力學計算. 中國稀土學報, 1984, 2(2):57 doi: 10.3321/j.issn:1000-4343.1984.02.009

    Li W C, Lin Q, Ye W, et al. Thermodynamical analysis of the formation of rare earth inclusions in 35CrNi3MoV steel. J Chin Rare Earth Soc, 1984, 2(2): 57 doi: 10.3321/j.issn:1000-4343.1984.02.009
    [26]
    Wu Z, Li J, Shi C B, et al. Effect of magnesium addition on inclusions in H13 die steel. Int J Miner Metall Mater, 2014, 21(11): 1062 doi: 10.1007/s12613-014-1010-x
    [27]
    Ohta H, Suito H. Deoxidation equilibria of calcium and magnesium in liquid iron. Metall Mater Trans B, 1997, 28(6): 1131 doi: 10.1007/s11663-997-0069-4
    [28]
    Nadif M, Gatellier C. Influence of calcium and magnesium on the solubility of oxygen and sulphur in liquid steel. Rev Met Paris, 1986, 83(5): 377 doi: 10.1051/metal/198683050377
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(7)  / Tables(5)

    Article views (2312) PDF downloads(84) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频