Citation: | CHEN Zhen-zhen, CHEN Hong-qiang, HUANG Lei, HAO Nan-jing. Research progress on fractal microchannels for heat transfer process intensification[J]. Chinese Journal of Engineering, 2022, 44(11): 1966-1977. doi: 10.13374/j.issn2095-9389.2022.01.11.003 |
[1] |
魏進家, 張永海. 柱狀微結構表面強化沸騰換熱研究綜述. 化工學報, 2016, 67(1):97
Wei J J, Zhang Y H. Review of enhanced boiling heat transfer over micro-pin-finned surfaces. CIESC J, 2016, 67(1): 97
|
[2] |
魏進家, 劉斌, 張永海. 常/微重力下微結構表面強化沸騰換熱研究進展. 化工進展, 2019, 38(1):14 doi: 10.16085/j.issn.1000-6613.2018-1133
Wei J J, Liu B, Zhang Y H. Progress in enhanced boiling heat transfer over microstructured surfaces under normal/microgravity. Chem Ind Eng Prog, 2019, 38(1): 14 doi: 10.16085/j.issn.1000-6613.2018-1133
|
[3] |
Ramesh K N, Sharma T K, Rao G A P. Latest advancements in heat transfer enhancement in the micro-channel heat sinks: A review. Arch Comput Methods Eng, 2021, 28(4): 3135 doi: 10.1007/s11831-020-09495-1
|
[4] |
Kumar S, Kumar A, Kothiyal A D, et al. A review of flow and heat transfer behaviour of nanofluids in micro channel heat sinks. Therm Sci Eng Prog, 2018, 8: 477 doi: 10.1016/j.tsep.2018.10.004
|
[5] |
Japar W M A A, Sidik N A C, Mat S. A comprehensive study on heat transfer enhancement in microchannel heat sink with secondary channel. Int Commun Heat Mass Transf, 2018, 99: 62 doi: 10.1016/j.icheatmasstransfer.2018.10.005
|
[6] |
Sidik N A C, Muhamad M N A W, Japar W M A A, et al. An overview of passive techniques for heat transfer augmentation in microchannel heat sink. Int Commun Heat Mass Transf, 2017, 88: 74 doi: 10.1016/j.icheatmasstransfer.2017.08.009
|
[7] |
Tuckerman D B, Pease R F W. High-performance heat sinking for VLSI. IEEE Electron Device Lett, 1981, 2(5): 126 doi: 10.1109/EDL.1981.25367
|
[8] |
Deng D X, Zeng L, Sun W. A review on flow boiling enhancement and fabrication of enhanced microchannels of microchannel heat sinks. Int J Heat Mass Transf, 2021, 175: 121332 doi: 10.1016/j.ijheatmasstransfer.2021.121332
|
[9] |
Chen X Y, Li T C, Shen J N, et al. Fractal design of microfluidics and nanofluidics—A review. Chemom Intell Lab Syst, 2016, 155: 19 doi: 10.1016/j.chemolab.2016.04.003
|
[10] |
Daniels B, Liburdy J A, Pence D V. Adiabatic flow boiling in fractal-like microchannels. Heat Transf Eng, 2007, 28(10): 817 doi: 10.1080/01457630701378218
|
[11] |
Yan Y F, Shen K M, Liu Y, et al. Thermal-hydraulic performance enhancement of miniature heat sinks using connected Y-shaped fractal micro-channels. Chem Eng Process Process Intensif, 2021, 166: 108487 doi: 10.1016/j.cep.2021.108487
|
[12] |
Huang P N, Dong G P, Zhong X N, et al. Numerical investigation of the fluid flow and heat transfer characteristics of tree-shaped microchannel heat sink with variable cross-section. Chem Eng Process Process Intensif, 2020, 147: 107769 doi: 10.1016/j.cep.2019.107769
|
[13] |
Zhang C B, Li J, Chen Y P. Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins. Appl Energy, 2020, 259: 114102 doi: 10.1016/j.apenergy.2019.114102
|
[14] |
Yuan B, Liu L, Cui C Y, et al. Micro-pin-finned surfaces with fractal treelike hydrophilic networks for flow boiling enhancement. ACS Appl Mater Interfaces, 2021, 13(40): 48189 doi: 10.1021/acsami.1c11250
|
[15] |
Pence D. Reduced pumping power and wall temperature in microchannel heat sinks with fractal-like branching channel networks. Microscale Thermophys Eng, 2003, 6(4): 319 doi: 10.1080/10893950290098359
|
[16] |
Alharbi A Y, Pence D V, Cullion R N. Fluid flow through microscale fractal-like branching channel networks. J Fluids Eng, 2003, 125(6): 1051 doi: 10.1115/1.1625684
|
[17] |
Alharbi A Y, Pence D V, Cullion R N. Thermal characteristics of microscale fractal-like branching channels. J Heat Transf, 2004, 126(5): 744 doi: 10.1115/1.1795236
|
[18] |
Heymann D, Pence D, Narayanan V. Optimization of fractal-like branching microchannel heat sinks for single-phase flows. Int J Therm Sci, 2010, 49(8): 1383 doi: 10.1016/j.ijthermalsci.2010.01.015
|
[19] |
Salakij S, Liburdy J A, Pence D V, et al. Modeling in situ vapor extraction during convective boiling in fractal-like branching microchannel networks. Int J Heat Mass Transf, 2013, 60: 700 doi: 10.1016/j.ijheatmasstransfer.2013.01.004
|
[20] |
Ghaedamini H, Salimpour M R, Mujumdar A S. The effect of svelteness on the bifurcation angles role in pressure drop and flow uniformity of tree-shaped microchannels. Appl Therm Eng, 2011, 31(5): 708 doi: 10.1016/j.applthermaleng.2010.10.005
|
[21] |
Wang S F, Yu B M. A fractal model for the starting pressure gradient for Bingham fluids in porous media embedded with fractal-like tree networks. Int J Heat Mass Transf, 2011, 54(21-22): 4491 doi: 10.1016/j.ijheatmasstransfer.2011.06.031
|
[22] |
Lyu Z J, Pourfattah F, Arani A A A, et al. On the thermal performance of a fractal microchannel subjected to water and kerosene carbon nanotube nanofluid. Sci Rep, 2020, 10: 7243 doi: 10.1038/s41598-020-64142-w
|
[23] |
Niu Y T, Huang P N, Pan M Q. Study of heat and mass transfer by bionic fractal microchannel plates. Chem Eng Technol, 2021, 44(4): 741 doi: 10.1002/ceat.202000554
|
[24] |
Yan Y F, Yan H Y, Yin S Y, et al. Single/multi-objective optimizations on hydraulic and thermal management in micro-channel heat sink with bionic Y-shaped fractal network by genetic algorithm coupled with numerical simulation. Int J Heat Mass Transf, 2019, 129: 468 doi: 10.1016/j.ijheatmasstransfer.2018.09.120
|
[25] |
He Z Q, Yan Y F, Zhao T, et al. Multi-objective optimization and multi-factors analysis of the thermal/hydraulic performance of the bionic Y-shaped fractal heat sink. Appl Therm Eng, 2021, 195: 117157 doi: 10.1016/j.applthermaleng.2021.117157
|
[26] |
He Z Q, Yan Y F, Feng S, et al. Multi-objective optimizations on thermal and hydraulic performance of symmetric and asymmetric bionic Y-shaped fractal networks by genetic algorithm coupled with CFD simulation. Int Commun Heat Mass Transf, 2021, 124: 105261 doi: 10.1016/j.icheatmasstransfer.2021.105261
|
[27] |
Yan Y F, He Z Q, Wu G G, et al. Influence of hydrogels embedding positions on automatic adaptive cooling of hot spot in fractal microchannel heat sink. Int J Therm Sci, 2020, 155: 106428 doi: 10.1016/j.ijthermalsci.2020.106428
|
[28] |
Duan Z J, Xie G N, Shen H, et al. Thermal performance and entropy generation of single-layer and double-layer constructal Y-shaped bionic microchannel heat sinks. Int J Energy Res, 2021, 45(6): 9449 doi: 10.1002/er.6473
|
[29] |
Yan Y F, Yan H Y, Feng S, et al. Thermal-hydraulic performances and synergy effect between heat and flow distribution in a truncated doubled-layered heat sink with Y-shaped fractal network. Int J Heat Mass Transf, 2019, 142: 118337 doi: 10.1016/j.ijheatmasstransfer.2019.06.093
|
[30] |
Fang K, Xu S L. Microfludic and heat transfer performance of multilayer fractal-like microchannel network. Adv Mater Res, 2011, 422: 392 doi: 10.4028/www.scientific.net/AMR.422.392
|
[31] |
Pence D. The simplicity of fractal-like flow networks for effective heat and mass transport. Exp Therm Fluid Sci, 2010, 34(4): 474 doi: 10.1016/j.expthermflusci.2009.02.004
|
[32] |
Kwak Y, Pence D, Liburdy J, et al. Gas-liquid flows in a microscale fractal-like branching flow network. Int J Heat Fluid Flow, 2009, 30(5): 868 doi: 10.1016/j.ijheatfluidflow.2009.03.014
|
[33] |
Daniels B J, Liburdy J A, Pence D V. Experimental studies of adiabatic flow boiling in fractal-like branching microchannels. Exp Therm Fluid Sci, 2011, 35(1): 1 doi: 10.1016/j.expthermflusci.2010.07.016
|
[34] |
Xu S L, Wang W J, Fang K, et al. Heat transfer performance of a fractal silicon microchannel heat sink subjected to pulsation flow. Int J Heat Mass Transf, 2015, 81: 33 doi: 10.1016/j.ijheatmasstransfer.2014.10.002
|
[35] |
Xu S L, Li Y, Hu X L, et al. Characteristics of heat transfer and fluid flow in a fractal multilayer silicon microchannel. Int Commun Heat Mass Transf, 2016, 71: 86 doi: 10.1016/j.icheatmasstransfer.2015.12.024
|
[36] |
Huang J, Zhang J H, Wang S Y, et al. Analysis of the flow rate characteristics of valveless piezoelectric pump with fractal-like Y-shape branching tubes. Chin J Mech Eng, 2014, 27(3): 628 doi: 10.3901/CJME.2014.03.628
|
[37] |
Liang L X, Hou J B, Fang X J, et al. Flow characteristics and heat transfer performance in a Y-Fractal mini/microchannel heat sink. Case Stud Therm Eng, 2019, 15: 100522 doi: 10.1016/j.csite.2019.100522
|
[38] |
See Y S, Leong K C. Experimental study of flow boiling of FC-72 in fractal-like flow channels. Int J Therm Sci, 2019, 140: 184 doi: 10.1016/j.ijthermalsci.2019.02.042
|
[39] |
Wang X Q, Yap C, Mujumdar A S. Laminar heat transfer in constructal microchannel networks with loops. J Electron Packag, 2006, 128(3): 273 doi: 10.1115/1.2229228
|
[40] |
Xu P, Wang X Q, Mujumdar A S, et al. Thermal characteristics of tree-shaped microchannel nets with/without loops. Int J Therm Sci, 2009, 48(11): 2139 doi: 10.1016/j.ijthermalsci.2009.03.018
|
[41] |
Yan Y F, Zhang C H, Liu Y, et al. Numerical study on hotspots adaptive cooling and thermal-hydraulic performance enhancement of fractal microchannel heat sink embedded with hydrogels. Int J Therm Sci, 2022, 172: 107272 doi: 10.1016/j.ijthermalsci.2021.107272
|
[42] |
Liu S T, Zhang Y C, Liu P. Heat transfer and pressure drop in fractal microchannel heat sink for cooling of electronic chips. Heat Mass Transf, 2007, 44(2): 221 doi: 10.1007/s00231-007-0240-0
|
[43] |
葛浩, 洪芳軍, 鄭平. 樹型微通道網絡在集成微電子冷卻中的應用. 工程熱物理學報, 2007, 28(增刊2): 41
Ge H, Hong F J, Zheng P. The application of tree-shaped microchannel network in microelectronic cooling. J Eng Thermophys, 2007, 28(Suppl 2): 41
|
[44] |
Xia C H, Fu J Z, Lai J T, et al. Conjugate heat transfer in fractal tree-like channels network heat sink for high-speed motorized spindle cooling. Appl Therm Eng, 2015, 90: 1032 doi: 10.1016/j.applthermaleng.2015.07.024
|
[45] |
Wang G, Gu Y, Zhao L, et al. Experimental and numerical investigation of fractal-tree-like heat exchanger manufactured by 3D printing. Chem Eng Sci, 2019, 195: 250 doi: 10.1016/j.ces.2018.07.021
|
[46] |
Paniagua-Guerra L E, Sehgal S, Gonzalez-Valle C U, et al. Fractal channel manifolds for microjet liquid-cooled heat sinks. Int J Heat Mass Transf, 2019, 138: 257 doi: 10.1016/j.ijheatmasstransfer.2019.04.039
|
[47] |
Hong F J, Cheng P, Wu H Y. Characterization on the performance of a fractal-shaped microchannel network for microelectronic cooling. J Micromech Microeng, 2011, 21(6): 065018 doi: 10.1088/0960-1317/21/6/065018
|
[48] |
Bejan A. Constructal-theory network of conducting paths for cooling a heat generating volume. Int J Heat Mass Transf, 1997, 40(4): 799 doi: 10.1016/0017-9310(96)00175-5
|
[49] |
Chen Y P, Cheng P. Heat transfer and pressure drop in fractal tree-like microchannel nets. Int J Heat Mass Transf, 2002, 45(13): 2643 doi: 10.1016/S0017-9310(02)00013-3
|
[50] |
Zhang C B, Chen Y P, Wu R, et al. Flow boiling in constructal tree-shaped minichannel network. Int J Heat Mass Transf, 2011, 54(1-3): 202 doi: 10.1016/j.ijheatmasstransfer.2010.09.051
|
[51] |
Chen Y P, Cheng P. An experimental investigation on the thermal efficiency of fractal tree-like microchannel nets. Int Commun Heat Mass Transf, 2005, 32(7): 931 doi: 10.1016/j.icheatmasstransfer.2005.02.001
|
[52] |
Chen Y P, Zhang C B, Shi M H, et al. Thermal and hydrodynamic characteristics of constructal tree-shaped minichannel heat sink. Aiche J, 2010, 56(8): 2018
|
[53] |
Senn S M, Poulikakos D. Laminar mixing, heat transfer and pressure drop in tree-like microchannel nets and their application for thermal management in polymer electrolyte fuel cells. J Power Sources, 2004, 130(1-2): 178 doi: 10.1016/j.jpowsour.2003.12.025
|
[54] |
Yu W, Xu L Y, Chen S J, et al. Numerical study on flow boiling in a tree-shaped microchannel. Fractals, 2019, 27(7): 1950111 doi: 10.1142/S0218348X19501111
|
[55] |
Ghodoossi L. Thermal and hydrodynamic analysis of a fractal microchannel network. Energy Convers Manag, 2005, 46(5): 771 doi: 10.1016/j.enconman.2004.05.008
|
[56] |
Escher W, Michel B, Poulikakos D. Efficiency of optimized bifurcating tree-like and parallel microchannel networks in the cooling of electronics. Int J Heat Mass Transf, 2009, 52(5-6): 1421 doi: 10.1016/j.ijheatmasstransfer.2008.07.048
|
[57] |
Hong F J, Cheng P, Ge H, et al. Conjugate heat transfer in fractal-shaped microchannel network heat sink for integrated microelectronic cooling application. Int J Heat Mass Transf, 2007, 50(25-26): 4986 doi: 10.1016/j.ijheatmasstransfer.2007.09.006
|
[58] |
Shui L Q, Huang B, Gao F, et al. Experimental and numerical investigation on the flow and heat transfer characteristics in a tree-like branching microchannel. J Mech Sci Technol, 2018, 32(2): 937 doi: 10.1007/s12206-018-0144-y
|
[59] |
Haller D, Woias P, Kockmann N. Simulation and experimental investigation of pressure loss and heat transfer in microchannel networks containing bends and T-junctions. Int J Heat Mass Transf, 2009, 52(11-12): 2678 doi: 10.1016/j.ijheatmasstransfer.2008.09.042
|
[60] |
Yan W T, Li C, Ye W B. Numerical investigation of hydrodynamic and heat transfer performances of nanofluids in a fractal microchannel heat sink. Heat Trans Asian Res, 2019, 48(6): 2329 doi: 10.1002/htj.21494
|
[61] |
葛秋明, 陳正明. 分形樹狀微通道散熱性能的數值研究. 流體動力學, 2021(3):44
Ge Q M, Chen Z M. Numerical study on heat dissipation performance of fractal tree microchannel. Int J Fluid Dyn, 2021(3): 44
|
[62] |
Wang X Q, Mujumdar A S, Yap C. Thermal characteristics of tree-shaped microchannel nets for cooling of a rectangular heat sink. Int J Therm Sci, 2006, 45(11): 1103 doi: 10.1016/j.ijthermalsci.2006.01.010
|
[63] |
Yu X F, Zhang C P, Teng J T, et al. A study on the hydraulic and thermal characteristics in fractal tree-like microchannels by numerical and experimental methods. Int J Heat Mass Transf, 2012, 55(25-26): 7499 doi: 10.1016/j.ijheatmasstransfer.2012.07.050
|
[64] |
Zhang C P, Lian Y F, Yu X F, et al. Numerical and experimental studies on laminar hydrodynamic and thermal characteristics in fractal-like microchannel networks. Part A: Comparisons of two numerical analysis methods on friction factor and Nusselt number. Int J Heat Mass Transf, 2013, 66: 930
|
[65] |
Zhang C P, Lian Y F, Hsu C H, et al. Investigations of thermal and flow behavior of bifurcations and bends in fractal-like microchannel networks: Secondary flow and recirculation flow. Int J Heat Mass Transf, 2015, 85: 723 doi: 10.1016/j.ijheatmasstransfer.2015.01.118
|
[66] |
Zhang C P, Lian Y F, Yu X F, et al. Numerical and experimental studies on laminar hydrodynamic and thermal characteristics in fractal-like microchannel networks. Part B: Investigations on the performances of pressure drop and heat transfer. Int J Heat Mass Transf, 2013, 66: 939
|
[67] |
Wechsatol W, Lorente S, Bejan A. Optimal tree-shaped networks for fluid flow in a disc-shaped body. Int J Heat Mass Transf, 2002, 45(25): 4911 doi: 10.1016/S0017-9310(02)00211-9
|
[68] |
Wang X Q, Mujumdar A S, Yap C. Numerical analysis of blockage and optimization of heat transfer performance of fractal-like microchannel nets. J Electron Packag, 2006, 128(1): 38 doi: 10.1115/1.2159007
|
[69] |
Rubio-Jimenez C A, Hernandez-Guerrero A, Cervantes J G, et al. CFD study of constructal microchannel networks for liquid-cooling of electronic devices. Appl Therm Eng, 2016, 95: 374 doi: 10.1016/j.applthermaleng.2015.11.037
|
[70] |
Wang M, Sun H Y, Cheng L. Investigation of convective heat transfer performance in nanochannels with fractal Cantor structures. Int J Heat Mass Transf, 2021, 171: 121086 doi: 10.1016/j.ijheatmasstransfer.2021.121086
|
[71] |
Chen Y P, Zhang C B, Fu P P, et al. Characterization of surface roughness effects on laminar flow in microchannels by using fractal cantor structures. J Heat Transf, 2012, 134(5): 051011 doi: 10.1115/1.4005701
|
[72] |
Chen Y P, Fu P P, Zhang C B, et al. Numerical simulation of laminar heat transfer in microchannels with rough surfaces characterized by fractal Cantor structures. Int J Heat Fluid Flow, 2010, 31(4): 622 doi: 10.1016/j.ijheatfluidflow.2010.02.017
|
[73] |
Zhang C B, Deng Z L, Chen Y P. Temperature jump at rough gas-solid interface in Couette flow with a rough surface described by Cantor fractal. Int J Heat Mass Transf, 2014, 70: 322 doi: 10.1016/j.ijheatmasstransfer.2013.10.080
|
[74] |
Meyer J P, van der Vyver H. Heat transfer characteristics of a quadratic Koch Island fractal heat exchanger. Heat Transf Eng, 2005, 26(9): 22 doi: 10.1080/01457630500205638
|
[75] |
Adrover A. Laminar convective heat transfer across fractal boundaries. Europhys Lett, 2010, 90(1): 14002 doi: 10.1209/0295-5075/90/14002
|
[76] |
Fan J, Liu Y. Heat transfer in fractal channel network of wool fibre. Mater Sci Technol, 2010, 26(11): 1320 doi: 10.1179/026708310X12798718274278
|
[77] |
Yang X, Wei L C, Cao F, et al. A parametric study of laminar convective heat transfer in fractal minichannels with hexagonal fins. Int J Energy Res, 2020, 44(12): 9382 doi: 10.1002/er.4942
|
[78] |
Zhuang D W, Yang Y F, Ding G L, et al. Optimization of microchannel heat sink with rhombus fractal-like units for electronic chip cooling. Int J Refrig, 2020, 116: 108 doi: 10.1016/j.ijrefrig.2020.03.026
|
[79] |
Yu H Y, Zhang H C, Xia X L. A fractal-skeleton model of high porosity macroporous aluminum and its heat transfer characterizes. J Therm Anal Calorim, 2020, 141(1): 351 doi: 10.1007/s10973-020-09535-9
|