<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 9
Sep.  2022
Turn off MathJax
Article Contents
YANG Wen-kui, YANG Jian, SONG Jing-ling, LI Heng-hua, ZHOU Xuan, LIU He-ping. Formation mechanism of defects in the wall of a petroleum casing steel pipe[J]. Chinese Journal of Engineering, 2022, 44(9): 1566-1574. doi: 10.13374/j.issn2095-9389.2022.01.11.002
Citation: YANG Wen-kui, YANG Jian, SONG Jing-ling, LI Heng-hua, ZHOU Xuan, LIU He-ping. Formation mechanism of defects in the wall of a petroleum casing steel pipe[J]. Chinese Journal of Engineering, 2022, 44(9): 1566-1574. doi: 10.13374/j.issn2095-9389.2022.01.11.002

Formation mechanism of defects in the wall of a petroleum casing steel pipe

doi: 10.13374/j.issn2095-9389.2022.01.11.002
More Information
  • Corresponding author: E-mail: yang_jian@t.shu.edu.cn
  • Received Date: 2022-01-11
    Available Online: 2022-02-21
  • Publish Date: 2022-09-01
  • In this study, the defects in the wall of petroleum casing steel pipe were investigated. The morphology and composition of inclusions in the defects of the steel pipe were analyzed using scanning electron microscopy–energy-dispersive X-ray spectroscopy. The thermodynamic calculation of the Ca?Al equilibrium phase diagram of molten steel in tundish and the changes of the ladle slag phase composition with cooling temperature was performed using FactSage8.0. The results show that the longitudinal surface of the defect is mainly composed of shallow and deep stripes. A large number of MgO·Al2O3 inclusions containing a small amount of Mn is detected at shallow stripes, and a large number of inclusions, such as Al2O3, MgO·Al2O3, and CaO·Al2O3·SiO2 are detected at deep stripes. The three main types of inclusions in the cross-section of the defect zone are CaO·Al2O3·SiO2, CaO·Al2O3·MgO, and CaO·Al2O3·MgO·SiO2. According to the analysis results of inclusions in the cross-section and the calculation results of the phase transformation of slag droplets during solidification and cooling, the formation mechanism of the defects in the wall of steel pipe can be speculated as follows: (1) At the end of pouring, the ladle slag in molten steel in the ladle enters the tundish. Further, the slag droplets adsorb the fine xAl2O3·yCaO or Al2O3 inclusions with high Al2O3 content in molten steel, increasing the Al2O3 and CaO contents in the slag droplets. (2) Ladle slag in molten steel is subjected to strong stirring in Ar gas in the vacuum degassing (VD) refining process. Moreover, the slag droplets adsorb the fine Al2O3 inclusions in molten steel, increasing the Al2O3 content in the slag droplets. During solidification and cooling, the slag droplets formed in the two aforementioned forms of inclusions are transformed into three types of inclusions: CaO·Al2O3·SiO2, CaO·Al2O3·MgO, and CaO·Al2O3·SiO2·MgO. In the process of round billet piercing deformation, under the action of longitudinal tensile stress and transverse shear stress, the large slag droplets involved extend along the longitudinal cross-section and finally form defects in the wall of the steel pipe.

     

  • loading
  • [1]
    馮慶, 于輝, 劉波, 等. 連鑄坯表面缺陷對連軋鋼管表面質量的影響. 理化檢驗(物理分冊), 2015, 51(10):679

    Feng Q, Yu H, Liu B, et al. Influence of continuous casting billet surface defects on continuous rolling steel pipe surface quality. Phys Test Chem Anal (Part A Phys Test), 2015, 51(10): 679
    [2]
    鄧明明, 彭其春, 肖云清, 等. 25Mn鋼?185 mm×13 mm冷拔管內表面麻點狀缺陷的分析和控制工藝. 特殊鋼, 2017, 38(6):23 doi: 10.3969/j.issn.1003-8620.2017.06.006

    Deng M M, Peng Q C, Xiao Y Q, et al. Analysis on mottled spots defect of internal surface of ?185 mm×13 mm cold-drawn tube of steel 25Mn. Special Steel, 2017, 38(6): 23 doi: 10.3969/j.issn.1003-8620.2017.06.006
    [3]
    王樺, 趙健明. 某E355鋼冷拔油缸管點狀缺陷分析. 理化檢驗(物理分冊), 2020, 56(3):57

    Wang H, Zhao J M. Analysis on spot defects of E355 steel cold drawing cylinder tube. Phys Test Chem Anal (Part A Phys Test), 2020, 56(3): 57
    [4]
    郎一鳴, 聶向暉, 王高峰, 等. 20鋼無縫管開裂原因分析. 熱加工工藝, 2016, 45(10):257

    Lang Y M, Nie X H, Wang G F, et al. Cracking reason analysis of 20 steel seamless pipe. Hot Work Technol, 2016, 45(10): 257
    [5]
    常鎮韜, 魏占山, 李壯, 等. 低碳鋼連鑄坯質量缺陷分析及改進. 鑄造技術, 2017, 38(11):2717

    Chang Z T, Wei Z S, Li Z, et al. Analysis and improvement of quality defects in low-carbon steel continuously casting billets. Foundry Technol, 2017, 38(11): 2717
    [6]
    秦緒華, 齊曉峰, 張秀華. 37Mn5鋼管內壁鱗片狀缺陷原因分析及改進措施. 中國冶金, 2020, 30(8):42

    Qin X H, Qi X F, Zhang X H. Cause analysis and improvement measures of scaly defects on inner surface of 37Mn5 steel pipe. China Metall, 2020, 30(8): 42
    [7]
    周立新, 李波, 陳方玉, 等. 30CrMnSiA管材斷裂原因分析. 物理測試, 2012, 30(4):43

    Zhou L X, Li B, Chen F Y, et al. Fracture analysis of tube 30CrMnSiA. Phys Exam Test, 2012, 30(4): 43
    [8]
    李紅光, 陳天明, 陳亮, 等. JS25Mn鋼管內表面起皮缺陷分析與控制. 鋼鐵釩鈦, 2016, 37(5):153 doi: 10.7513/j.issn.1004-7638.2016.05.026

    Li H G, Chen T M, Chen L, et al. Analyze and control for peeling defects on the internal surface of JS25Mn steel tube. Iron Steel Vanadium Titanium, 2016, 37(5): 153 doi: 10.7513/j.issn.1004-7638.2016.05.026
    [9]
    馬亞鑫, 王奎, 門正興, 等. Q345D鋼坯裂紋缺陷分析. 鑄造技術, 2016, 37(11):2372

    Ma Y X, Wang K, Men Z X, et al. Analysis on crack defects in Q345D steel billet. Foundry Technol, 2016, 37(11): 2372
    [10]
    李金展, 鄭喜平. 27SiMn熱軋無縫鋼管內壁毛刺的原因分析. 材料保護, 2019, 52(12):168

    Li J Z, Zheng X P. Analysis of 27SiMn hot rolled seamless steel pipe inner burr. Mater Prot, 2019, 52(12): 168
    [11]
    季德靜, 齊曉峰. ?168 mm×5 mm 20鋼管內折缺陷原因分析及改進措施. 特殊鋼, 2021, 42(1):32

    Ji D J, Qi X F. Cause analysis and improvement measures of inner folding defects of ?168 mm × 5 mm 0. 20% C steel tube. Special Steel, 2021, 42(1): 32
    [12]
    Wang Q M, Cheng G G, Li J Y, et al. Formation mechanism of large inclusions in 80t 20Cr?8Ni stainless steel casting for nuclear power. Steel Res Int, 2019, 90(12): 1900349 doi: 10.1002/srin.201900349
    [13]
    儲焰平, 諶智勇, 劉南, 等. 高速重軌鋼中尖晶石夾雜物的形成及控制. 鋼鐵, 2020, 55(1):38

    Chu Y P, Chen Z Y, Liu N, et al. Formation and control of spinel inclusions in high-speed heavy rail steel. Iron Steel, 2020, 55(1): 38
    [14]
    龍鵠, 成國光, 丘文生, 等. 軸承鋼中大尺寸夾雜物的特征、來源及改進工藝. 中國冶金, 2020, 30(9):53

    Long H, Cheng G G, Qiu W S, et al. Characteristics, sources analysis of large size inclusions and technical improvement during bearing steel production. China Metall, 2020, 30(9): 53
    [15]
    任強, 姜東濱, 張立峰, 等. Q235鋼中夾雜物演變規律和生成機理分析. 鋼鐵, 2020, 55(7):47

    Ren Q, Jiang D B, Zhang L F, et al. Evolution and formation mechanism of inclusions in a Q235 steel. Iron Steel, 2020, 55(7): 47
    [16]
    音正元, 張立峰, 李超, 等. Q345D鋼中含鈣類夾雜物的演變和生成機理分析. 鋼鐵, 2020, 55(11):47

    Yin Z Y, Zhang L F, Li C, et al. Analysis of evolution and formation mechanism of calcium-containing inclusions of Q345D steel. Iron Steel, 2020, 55(11): 47
    [17]
    Jiang M, Liu J C, Li K L, et al. Formation mechanism of large CaO?SiO2?Al2O3 inclusions in Si-deoxidized spring steel refined by low basicity slag. Metall Mater Trans B, 2021, 52(4): 1950 doi: 10.1007/s11663-021-02230-6
    [18]
    Miao Z Q, Cheng G G, Li S J, et al. Formation mechanism of large-size CaO–Al2O3–MgO–SiO2 inclusions in high carbon chromium bearing steel. ISIJ Int, 2021, 61(7): 2083 doi: 10.2355/isijinternational.ISIJINT-2020-729
    [19]
    王林珠, 李軍旗, 楊樹峰, 等. 高鋁鋼中鈣處理對非金屬夾雜物特征的影響. 鋼鐵, 2019, 54(11):27

    Wang L Z, Li J Q, Yang S F, et al. Effect of calcium treatment on characteristics of non-metallic inclusions in steel containing high Al. Iron Steel, 2019, 54(11): 27
    [20]
    王祎, 張立峰, 任英, 等. 37Mn5鋼精煉過程夾雜物轉變機理. 鋼鐵, 2020, 55(5):39

    Wang Y, Zhang L F, Ren Y, et al. Mechanism of inclusion evolution during refining process of 37Mn5 steel production. Iron Steel, 2020, 55(5): 39
    [21]
    王祎, 張立峰, 楊文, 等. Q345鋼液凝固及鑄坯冷卻過程中非金屬夾雜物的組成演變. 煉鋼, 2020, 36(2):29

    Wang Y, Zhang L F, Yang W, et al. Evolution of non-metallic inclusion composition during cooling and solidification process of Q345 steel. Steelmaking, 2020, 36(2): 29
    [22]
    肖微, 包燕平, 王敏, 等. 非鋁脫氧GCr15軸承鋼的夾雜物演變和控制. 鋼鐵, 2021, 56(1):37

    Xiao W, Bao Y P, Wang M, et al. Inclusions evolution and control of non-aluminum deoxidized GCr15 bearing steel. Iron Steel, 2021, 56(1): 37
    [23]
    印傳磊, 翟萬里, 蔣棟初, 等. 42CrMo鋼大尺寸夾雜物的來源與控制. 中國冶金, 2021, 31(1):36

    Yin C L, Zhai W L, Jiang D C, et al. Source and control of large-size inclusions in 42CrMo steel. China Metall, 2021, 31(1): 36
    [24]
    牛凱軍, 楊文, 張立峰, 等. 簾線鋼凝固過程夾雜物生成熱力學及工業實踐. 鋼鐵, 2020, 55(6):61

    Niu K J, Yang W, Zhang L F, et al. Thermodynamics and industrial practice of formation of inclusions during solidification of tire cord steels. Iron Steel, 2020, 55(6): 61
    [25]
    張國鋒, 季莎, 張立峰, 等. 20CrMnTiH齒輪鋼凝固和冷卻過程中非金屬夾雜物的轉變研究. 煉鋼, 2020, 36(3):32

    Zhang G F, Ji S, Zhang L F, et al. Study on transformation of non-metallic inclusions in 20CrMnTiH gear steel during solidification and cooling. Steelmaking, 2020, 36(3): 32
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article views (2104) PDF downloads(59) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频