Citation: | ZHANG Ming, FU Dong-mei, ZHANG Da-wei, MA Ling-wei, SHAO Li-zhen. Extraction of important variables and mining of dependencies of atmospheric corrosion of carbon steel based on a comprehensive intelligent model[J]. Chinese Journal of Engineering, 2023, 45(3): 407-418. doi: 10.13374/j.issn2095-9389.2022.01.10.007 |
[1] |
Tsuru T, Nishikata A, Wang J. Electrochemical studies on corrosion under a water film. Mater Sci Eng A, 1995, 198(1-2): 161 doi: 10.1016/0921-5093(95)80071-2
|
[2] |
Wan S, Hou J, Zhang Z F, et al. Monitoring of atmospheric corrosion and dewing process by interlacing copper electrode sensor. Corros Sci, 2019, 150: 246
|
[3] |
Palsson N S, Wongpinkaew K, Khamsuk P, et al. Outdoor atmospheric corrosion of carbon steel and weathering steel exposed to the tropical-coastal climate of Thailand. Mater Corros, 2020, 71(6): 1019 doi: 10.1002/maco.201911340
|
[4] |
Li Z L, Fu D M, Li Y, et al. Application of an electrical resistance sensor-based automated corrosion monitor in the study of atmospheric corrosion. Materials, 2019, 12(7): 1065 doi: 10.3390/ma12071065
|
[5] |
Wang J R, Bai Z H, Xiao K, et al. Influence of atmospheric particulates on initial corrosion behavior of printed circuit board in pollution environments. Appl Surf Sci, 2019, 467-468: 889 doi: 10.1016/j.apsusc.2018.10.244
|
[6] |
Meng J T, Zhang H, Wang X, et al. Data mining to atmospheric corrosion process based on evidence fusion. Materials, 2021, 14(22): 6954
|
[7] |
Oesch S. The effect of SO2, NO2, NO and O3 on the corrosion of unalloyed carbon steel and weathering steel—The results of laboratory exposures. Corros Sci, 1996, 38(8): 1357 doi: 10.1016/0010-938X(96)00025-X
|
[8] |
Cai Y K, Zhao Y, Ma X B, et al. Influence of environmental factors on atmospheric corrosion in dynamic environment. Corros Sci, 2018, 137: 163 doi: 10.1016/j.corsci.2018.03.042
|
[9] |
International Organization for Standardization. ISO 9226—2012 Corrosion of Metals and Alloys—Corrosivity of Atmospheres—Determination of Corrosion Rate of Standard Specimens for the Evaluation of Corrosivity. Geneve: International Organization for Standardization Press, 2012
|
[10] |
International Organization for Standardization. ISO 9223—2012 Corrosion of Metals and Alloys— Corrosivity of Atmospheres—Classification, Determination and Estimation. Geneve: International Organization for Standardization Press, 2012
|
[11] |
Zhi Y J, Jin Z H, Lu L, et al. Improving atmospheric corrosion prediction through key environmental factor identification by random forest-based model. Corros Sci, 2021, 178: 109084
|
[12] |
Yan L C, Diao Y P, Lang Z Y, et al. Corrosion rate prediction and influencing factors evaluation of low-alloy steels in marine atmosphere using machine learning approach. Sci Technol Adv Mater, 2020, 21(1): 359 doi: 10.1080/14686996.2020.1746196
|
[13] |
Mansfeld F, Kenkel J V. Electrochemical monitoring of atmospheric corrosion phenomena. Corros Sci, 1976, 16(3): 111
|
[14] |
Yang D M, Mei H W, Wang L M. Corrosion measurement of the atmospheric environment using galvanic cell sensors. Sensors, 2019, 19(2): 331 doi: 10.3390/s19020331
|
[15] |
Mizuno D, Suzuki S, Fujita S, et al. Corrosion monitoring and materials selection for automotive environments by using Atmospheric Corrosion Monitor (ACM) sensor. Corros Sci, 2014, 83: 217
|
[16] |
Shi Y N, Fu D M, Zhou X Y, et al. Data mining to online galvanic current of zinc/copper Internet atmospheric corrosion monitor. Corros Sci, 2018, 133: 443 doi: 10.1016/j.corsci.2018.02.005
|
[17] |
Pei Z B, Cheng X Q, Yang X J, et al. Understanding environmental impacts on initial atmospheric corrosion based on corrosion monitoring sensors. J Mater Sci Technol, 2021, 64: 214 doi: 10.1016/j.jmst.2020.01.023
|
[18] |
Lipton Z C. The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery. Queue, 2018, 16(3): 31
|
[19] |
Pei Z B, Xiao K, Chen L H, et al. Investigation of corrosion behaviors on an Fe/Cu-type ACM sensor under various environments. Metals, 2020, 10(7): 905
|
[20] |
Pei Z B, Zhang D W, Zhi Y J, et al. Towards understanding and prediction of atmospheric corrosion of an Fe/Cu corrosion sensor via machine learning. Corros Sci, 2020, 170: 108697
|
[21] |
張明, 付冬梅, 程學群, 等. 基于變量選擇的尖點突變模型的兩步構建方法. 工程科學學報,http://www.shandonghometex.com/article/doi/10.13374/j.issn2095-9389.2021.07.19.006
Zhang M, Fu D M, Cheng X Q, et al. A two-step method for constructing a cusp catastrophe model based on the selection of important variables. Chin J Eng,http://www.shandonghometex.com/article/doi/10.13374/j.issn2095-9389.2021.07.19.006
|
[22] |
Breiman L. Random forests. Machine Learning, 2001, 45(1): 5 doi: 10.1023/A:1010933404324
|
[23] |
Fisher A, Rudin C, Dominici F. All models are wrong, but many are useful: Learning a variable's importance by studying an entire class of prediction models simultaneously [J/OL]. arXiv preprint (2018-06-23) [2022-01-10].https://arxiv.org/abs/1801.01489
|
[24] |
Biecek P. DALEX: explainers for complex predictive models [J/OL]. arXiv preprint (2018-06-23) [2022-01-10].https://arxiv.org/abs/1806.08915
|
[25] |
Zhang Z H, Beck M W, Winkler D A, et al. Opening the black box of neural networks: Methods for interpreting neural network models in clinical applications. Ann Transl Med, 2018, 6(11): 216 doi: 10.21037/atm.2018.05.32
|
[26] |
Nishikata A, Ichihara Y, Hayashi Y, et al. Influence of electrolyte layer thickness and pH on the initial stage of the atmospheric corrosion of iron. J Electrochem Soc, 1997, 144(4): 1244 doi: 10.1149/1.1837578
|
[27] |
Xia Y, Liu P, Zhang J Q, et al. Corrosion behavior of weathering steel under thin electrolyte layer at different relative humidity. J Mater Eng Perform, 2018, 27(1): 202 doi: 10.1007/s11665-017-3101-0
|
[28] |
Xiao K, Gao X, Yan L D, et al. Atmospheric corrosion factors of printed circuit boards in a dry-heat desert environment: Salty dust and diurnal temperature difference. Chem Eng J, 2018, 336: 92 doi: 10.1016/j.cej.2017.11.017
|
[29] |
Koushik B G, van den Steen N, Mamme M H, et al. Review on modelling of corrosion under droplet electrolyte for predicting atmospheric corrosion rate. J Mater Sci Technol, 2021, 62: 254
|
[30] |
Zhi Y J, Yang T, Fu D M. An improved deep forest model for forecast the outdoor atmospheric corrosion rate of low-alloy steels. J Mater Sci Technol, 2020, 49: 202
|
[31] |
Ha M Y, Jeon S H, Jeong Y S, et al. Corrosion environment monitoring of local structural members of a steel truss bridge under a marine environment. Int J Steel Struct, 2021, 21(1): 167 doi: 10.1007/s13296-020-00424-3
|
[32] |
Rajendran K, Sumi A, Bhattachariya M K, et al. Influence of relative humidity in Vibrio cholerae infection: A time series model. Indian J Med Res, 2011, 133: 138
|
[33] |
Yoon Y, Angel J D, Hansen D C. Atmospheric corrosion of silver in outdoor environments and modified accelerated corrosion chambers. Corrosion, 2016, 72(11): 1424
|