<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 45 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
MA Hong-zhi, WU Wen-yu, YU Zi-qiang, ZHAO Ji-hua, GAO Ming, WANG Qun-hui. Mechanism of caproic acid biosynthesis: energy metabolism and influencing factors[J]. Chinese Journal of Engineering, 2023, 45(4): 681-692. doi: 10.13374/j.issn2095-9389.2022.01.04.001
Citation: MA Hong-zhi, WU Wen-yu, YU Zi-qiang, ZHAO Ji-hua, GAO Ming, WANG Qun-hui. Mechanism of caproic acid biosynthesis: energy metabolism and influencing factors[J]. Chinese Journal of Engineering, 2023, 45(4): 681-692. doi: 10.13374/j.issn2095-9389.2022.01.04.001

Mechanism of caproic acid biosynthesis: energy metabolism and influencing factors

doi: 10.13374/j.issn2095-9389.2022.01.04.001
More Information
  • Corresponding author: E-mail: mahongzhi@ustb.edu.cn
  • Received Date: 2022-01-04
    Available Online: 2022-04-02
  • Publish Date: 2023-04-01
  • Caproic acid is a value-added product that has many uses in the preservation and synthesis of bio-energy. It is obtained via reverse β-oxidation reaction using electron donors and acceptors through the process of carbon chain elongation. The short-chain fatty acids are converted to high-value medium-chain fatty acids (such as caproic acid with six carbon chains). To improve the production yield of caproic acid, it is essential to clarify the relationship between reductase and energy supply, as well as the appropriate range of influencing factors and their mechanism in the biosynthesis process. This review paper describes the mechanisms of carbon chain elongation with lactic acid and ethanol as electron donors. Excessive ethanol oxidation, methanogenesis, and the lactate–acrylate pathways were introduced as competitive pathways during electron donor oxidation, and the corresponding inhibition methods were also reviewed. The reductase supply relationship between electron donor oxidation and electron acceptor reduction during the reverse β oxidation was discussed. In addition, this study clarified the utilization of energy by anaerobic microorganisms during the biosynthesis of caproic acid and two types of ATP synthesis: substrate level phosphorylation and electron transport phosphorylation. Electron bifurcation in the reverse β oxidation (a phenomenon in which two electrons from the same molecule are separated and redox potential is converted into energy to drive thermodynamically adverse reactions) and the role of different electron bifurcations in the production of caproic acid were evaluated. The influence of pH on the production of caproic acid driven by different electron donors was analyzed from the perspectives of competitive pathways, the growth range of functional microorganisms, and product inhibition. Regulating the collaboration between different bacterial communities and exploiting product separation techniques may enhance the production of caproic acid, and this should be investigated in the future. The role of CO2 and H2 as headspace in reverse β oxidation was investigated from the perspectives of substrates, competitive pathways, and thermodynamics. Relevant studies of the CO2 loading rate and H2 partial pressure were also reviewed. The development and current status of bioelectrochemical enhancement in the synthesis of caproic acid were examined, with emphasis on the fixation of CO2. Future research should focus on synthesizing caproic acid using lactic acid as an electron donor and organic wastewater as a substrate by bioelectrochemistry. This review summarized the advantages and disadvantages of the biosynthesis of caproic acid, providing theoretical guidance on how to produce it and improve its yield.

     

  • loading
  • [1]
    Rincon L, Puri M, Kojakovic A, et al. The contribution of sustainable bioenergy to renewable electricity generation in Turkey: Evidence based policy from an integrated energy and agriculture approach. Energy Policy, 2019, 130: 69 doi: 10.1016/j.enpol.2019.03.024
    [2]
    Calt E. Products from organic waste using managed ecosystem fermentation. J Sustainable Dev, 2015, 8(3): 43
    [3]
    張存勝, 楊莉, 劉巖, 等. 廉價廢棄物厭氧發酵制備生物己酸技術進展. 高校化學工程學報, 2021, 35(2):215 doi: 10.3969/j.issn.1003-9015.2021.02.003

    Zhang C S, Yang L, Liu Y, et al. Advances of biocaproate production from cost-effective substrates via anaerobic fermentation. J Chem Eng Chin Univ, 2021, 35(2): 215 doi: 10.3969/j.issn.1003-9015.2021.02.003
    [4]
    Wu Q L, Guo W Q, Bao X, et al. Upgrading liquor-making wastewater into medium chain fatty acid: Insights into co-electron donors, key microflora, and energy harvest. Water Res, 2018, 145: 650 doi: 10.1016/j.watres.2018.08.046
    [5]
    Zhu X Y, Tao Y, Liang C, et al. The synthesis of n-caproate from lactate: A new efficient process for medium-chain carboxylates production. Sci Rep, 2015, 5: 14360 doi: 10.1038/srep14360
    [6]
    劉春梅. 兩相法厭氧發酵產己酸及其微生物學研究[學位論文]. 無錫: 江南大學, 2018

    Liu C M. Caproate Production in Two-Phase Anaerobic Fermentation and Its Microbiological Process [Dissertation]. Wuxi: Jiangnan University, 2018
    [7]
    Wu Q L, Jiang Y, Chen Y, et al. Opportunities and challenges in microbial medium chain fatty acids production from waste biomass. Bioresour Technol, 2021, 340: 125633 doi: 10.1016/j.biortech.2021.125633
    [8]
    吳凡, 江皓, 李葉青. 利用厭氧發酵技術合成中鏈羧酸的研究進展. 環境工程, 2021, 39(8):150 doi: 10.13205/j.hjgc.202108021

    Wu F, Jiang H, Li Y Q. Advancements in producing medium chain carboxylic acids via anaerobic digestion. Environ Eng, 2021, 39(8): 150 doi: 10.13205/j.hjgc.202108021
    [9]
    朱文彬, 高明, 陰紫荷, 等. 有機廢物厭氧發酵生物合成己酸研究進展. 環境工程, 2020, 38(1):128 doi: 10.13205/j.hjgc.202001020

    Zhu W B, Gao M, Yin Z H, et al. Research progress on caproic acid production from organic waste by anaerobic fermentation. Environ Eng, 2020, 38(1): 128 doi: 10.13205/j.hjgc.202001020
    [10]
    Lubner C E, Jennings D P, Mulder D W, et al. Mechanistic insights into energy conservation by flavin-based electron bifurcation. Nat Chem Biol, 2017, 13(6): 655 doi: 10.1038/nchembio.2348
    [11]
    Kucek L A, Nguyen M, Angenent L T. Conversion of L-lactate into n-caproate by a continuously fed reactor microbiome. Water Res, 2016, 93: 163 doi: 10.1016/j.watres.2016.02.018
    [12]
    Prabhu R, Altman E, Eiteman M A. Lactate and acrylate metabolism by Megasphaera elsdenii under batch and steady-state conditions. Appl Environ Microbiol, 2012, 78(24): 8564 doi: 10.1128/AEM.02443-12
    [13]
    Spirito C M, Richter H, Rabaey K, et al. Chain elongation in anaerobic reactor microbiomes to recover resources from waste. Curr Opin Biotechnol, 2014, 27: 115 doi: 10.1016/j.copbio.2014.01.003
    [14]
    Buckel W, Thauer R K. Flavin-based electron bifurcation, ferredoxin, flavodoxin, and anaerobic respiration with protons (ech) or NAD + (rnf) as electron acceptors: A historical review. Front Microbiol, 2018, 9: 401 doi: 10.3389/fmicb.2018.00401
    [15]
    Wu Q L, Feng X C, Guo W Q, et al. Long-term medium chain carboxylic acids production from liquor-making wastewater: Parameters optimization and toxicity mitigation. Chem Eng J, 2020, 388: 124218 doi: 10.1016/j.cej.2020.124218
    [16]
    Roghair M, Hoogstad T, Strik D P B T B, et al. Controlling ethanol use in chain elongation by CO2 loading rate. Environ Sci Technol, 2018, 52(3): 1496 doi: 10.1021/acs.est.7b04904
    [17]
    Yin Y N, Zhang Y F, Karakashev D B, et al. Biological caproate production by Clostridium kluyveri from ethanol and acetate as carbon sources. Bioresour Technol, 2017, 241: 638 doi: 10.1016/j.biortech.2017.05.184
    [18]
    Angenent L T, Richter H, Buckel W, et al. Chain elongation with reactor microbiomes: Open-culture biotechnology to produce biochemicals. Environ Sci Technol, 2016, 50(6): 2796 doi: 10.1021/acs.est.5b04847
    [19]
    Herrmann G, Jayamani E, Mai G, et al. Energy conservation via electron-transferring flavoprotein in anaerobic bacteria. J Bacteriol, 2008, 190(3): 784 doi: 10.1128/JB.01422-07
    [20]
    Buckel W. Unusual enzymes involved in five pathways of glutamate fermentation. Appl Microbiol Biotechnol, 2001, 57(3): 263 doi: 10.1007/s002530100773
    [21]
    Buckel W, Thauer R K. Energy conservation via electron bifurcating ferredoxin reduction and proton/Na+ translocating ferredoxin oxidation. Biochim Biophys Acta, 2013, 1827(2): 94 doi: 10.1016/j.bbabio.2012.07.002
    [22]
    Thauer R K, Jungermann K, Rupprecht E, et al. Hydrogen formation from NADH in cell-free extracts of Clostridium kluyveri. FEBS Lett, 1969, 4(2): 108 doi: 10.1016/0014-5793(69)80208-5
    [23]
    Kaplan N O, Kennedy E P. Current Aspects of Biochemical Energetics. Fritz Lipmann Dedicatory Volume. New York: Academic Press, 1966
    [24]
    Seedorf H, Fricke W F, Veith B, et al. The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features. Proc Natl Acad Sci USA, 2008, 105(6): 2128 doi: 10.1073/pnas.0711093105
    [25]
    Müller V, Chowdhury N P, Basen M. Electron bifurcation: A long-hidden energy-coupling mechanism. Annu Rev Microbiol, 2018, 72: 331 doi: 10.1146/annurev-micro-090816-093440
    [26]
    Weghoff M C, Bertsch J, Müller V. A novel mode of lactate metabolism in strictly anaerobic bacteria. Environ Microbiol, 2015, 17(3): 670 doi: 10.1111/1462-2920.12493
    [27]
    Kenealy W R, Waselefsky D M. Studies on the substrate range of Clostridium kluyveri; the use of propanol and succinate. Arch Microbiol, 1985, 141(3): 187 doi: 10.1007/BF00408056
    [28]
    Barker H A, Taha S M. Clostridium kluyverii, an organism concerned in the formation of caproic acid from ethyl alcohol. J Bacteriol, 1942, 43(3): 347 doi: 10.1128/jb.43.3.347-363.1942
    [29]
    Weimer P J, Stevenson D M. Isolation, characterization, and quantification of Clostridium kluyveri from the bovine rumen. Appl Microbiol Biotechnol, 2012, 94(2): 461 doi: 10.1007/s00253-011-3751-z
    [30]
    San-Valero P, Abubackar H N, Veiga M C, et al. Effect of pH, yeast extract and inorganic carbon on chain elongation for hexanoic acid production. Bioresour Technol, 2020, 300: 122659 doi: 10.1016/j.biortech.2019.122659
    [31]
    Zhang C S, Yang L, Huo S H, et al. Optimization of the cell immobilization-based chain-elongation process for efficient n-caproate production. ACS Sustain Chem Eng, 2021, 9(11): 4014 doi: 10.1021/acssuschemeng.0c07281
    [32]
    Wu Q L, Guo W Q, You S J, et al. Concentrating lactate-carbon flow on medium chain carboxylic acids production by hydrogen supply. Bioresour Technol, 2019, 291: 121573 doi: 10.1016/j.biortech.2019.121573
    [33]
    Yu J N, Huang Z X, Wu P, et al. Performance and microbial characterization of two-stage caproate fermentation from fruit and vegetable waste via anaerobic microbial consortia. Bioresour Technol, 2019, 284: 398 doi: 10.1016/j.biortech.2019.03.124
    [34]
    Ge S J, Usack J G, Spirito C M, et al. Long-term n-caproic acid production from yeast-fermentation beer in an anaerobic bioreactor with continuous product extraction. Environ Sci Technol, 2015, 49(13): 8012 doi: 10.1021/acs.est.5b00238
    [35]
    Grootscholten T I M, Strik D P B T B, Steinbusch K J J, et al. Two-stage medium chain fatty acid (MCFA) production from municipal solid waste and ethanol. Appl Energy, 2014, 116: 223 doi: 10.1016/j.apenergy.2013.11.061
    [36]
    Cavalcante W D A, Leit?o R C, Gehring T A, et al. Anaerobic fermentation for n-caproic acid production: A review. Process Biochem, 2017, 54: 106 doi: 10.1016/j.procbio.2016.12.024
    [37]
    Vasudevan D, Richter H, Angenent L T. Upgrading dilute ethanol from syngas fermentation to n-caproate with reactor microbiomes. Bioresour Technol, 2014, 151: 378 doi: 10.1016/j.biortech.2013.09.105
    [38]
    Crognale S, Braguglia C M, Gallipoli A, et al. Direct conversion of food waste extract into caproate: Metagenomics assessment of chain elongation process. Microorganisms, 2021, 9(2): 327 doi: 10.3390/microorganisms9020327
    [39]
    Wang K, Yin J, Shen D S, et al. Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: Effect of pH. Bioresour Technol, 2014, 161: 395 doi: 10.1016/j.biortech.2014.03.088
    [40]
    Zhu X Y, Zhou Y, Wang Y, et al. Production of high-concentration n-caproic acid from lactate through fermentation using a newly isolated Ruminococcaceae bacterium CPB6. Biotechnol Biofuels, 2017, 10: 102 doi: 10.1186/s13068-017-0788-y
    [41]
    Candry P, Radi? L, Favere J, et al. Mildly acidic pH selects for chain elongation to caproic acid over alternative pathways during lactic acid fermentation. Water Res, 2020, 186: 116396 doi: 10.1016/j.watres.2020.116396
    [42]
    Lewis V P, Yang S T. Propionic acid fermentation by Propionibacterium acidipropionici: Effect of growth substrate. Appl Microbiol Biotechnol, 1992, 37(4): 437
    [43]
    Xie S B, Ma J W, Li L, et al. Anaerobic caproate production on carbon chain elongation: Effect of lactate/butyrate ratio, concentration and operation mode. Bioresour Technol, 2021, 329: 124893 doi: 10.1016/j.biortech.2021.124893
    [44]
    Nzeteu C O, Trego A C, Abram F, et al. Reproducible, high-yielding, biological caproate production from food waste using a single-phase anaerobic reactor system. Biotechnol Biofuels, 2018, 11: 108 doi: 10.1186/s13068-018-1101-4
    [45]
    Gao M, Lin Y J, Wang P, et al. Production of medium-chain fatty acid caproate from Chinese liquor distillers’ grain using pit mud as the fermentation microbes. J Hazard Mater, 2021, 417: 126037 doi: 10.1016/j.jhazmat.2021.126037
    [46]
    Venkateswar Reddy M, Kumar G, Mohanakrishna G, et al. Review on the production of medium and small chain fatty acids through waste valorization and CO2 fixation. Bioresour Technol, 2020, 309: 123400 doi: 10.1016/j.biortech.2020.123400
    [47]
    Tomlinson N, Barker H A. Carbon dioxide and acetate utilization by clostridium kluyveri: I. Influence of nutritional conditions on utilization patterns. J Biol Chem, 1954, 209(2): 585
    [48]
    Kleerebezem R, Loosdrecht M C M V. A generalized method for thermodynamic state analysis of environmental systems. Crit Rev Environ Sci Technol, 2010, 40(1): 1 doi: 10.1080/10643380802000974
    [49]
    Demler M, Weuster-Botz D. Reaction engineering analysis of hydrogenotrophic production of acetic acid by Acetobacterium woodii. Biotechnol Bioeng, 2011, 108(2): 470 doi: 10.1002/bit.22935
    [50]
    Stams A J M. Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie Van Leeuwenhoek, 1994, 66(1): 271
    [51]
    González-Cabaleiro R, Lema J M, Rodríguez J, et al. Linking thermodynamics and kinetics to assess pathway reversibility in anaerobic bioprocesses. Energy Environ Sci, 2013, 6(12): 3780 doi: 10.1039/c3ee42754d
    [52]
    González-Tenorio D, Mu?oz-Páez K M, Buitrón G, et al. Fermentation of organic wastes and CO2+H2 off-gas by microbiotas provides short-chain fatty acids and ethanol for n-caproate production. J CO2 Util, 2020, 42: 101314 doi: 10.1016/j.jcou.2020.101314
    [53]
    Rabaey K, Rozendal R A. Microbial electrosynthesis—Revisiting the electrical route for microbial production. Nat Rev Microbiol, 2010, 8(10): 706 doi: 10.1038/nrmicro2422
    [54]
    Eerten-Jansen M C A A, Ter Heijne A, Grootscholten T I M, et al. Bioelectrochemical production of caproate and caprylate from acetate by mixed cultures. ACS Sustainable Chem Eng, 2013, 1(5): 513 doi: 10.1021/sc300168z
    [55]
    Andersen S J, Candry P, Basadre T, et al. Electrolytic extraction drives volatile fatty acid chain elongation through lactic acid and replaces chemical pH control in thin stillage fermentation. Biotechnol Biofuels, 2015, 8: 221 doi: 10.1186/s13068-015-0396-7
    [56]
    Jiang Y, Chu N, Zhang W, et al. Electro-fermentation regulates mixed culture chain elongation with fresh and acclimated cathode. Energy Convers Manag, 2020, 204: 112285 doi: 10.1016/j.enconman.2019.112285
    [57]
    Cheng S L, Liu Z H, Varrone C, et al. Elucidating the microbial ecological mechanisms on the electro-fermentation of caproate production from acetate via ethanol-driven chain elongation. Environ Res, 2022, 203: 111875 doi: 10.1016/j.envres.2021.111875
    [58]
    Cheng S A, Xing D F, Call D F, et al. Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol, 2009, 43(10): 3953 doi: 10.1021/es803531g
    [59]
    Nevin K P, Woodard T L, Franks A E, et al. Microbial electrosynthesis: Feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio, 2010, 1(2): e00103?10
    [60]
    Raes S M T, Jourdin L, Buisman C J N, et al. Continuous long-term bioelectrochemical chain elongation to butyrate. ChemElectroChem, 2017, 4(2): 386 doi: 10.1002/celc.201600587
    [61]
    Chu N, Hao W, Wu Q L, et al. Microbial electrosynthesis for producing medium chain fatty acids. Engineering,https://doi.org/10.1016/j.eng.2021.03.025
    [62]
    Igor V, Hernandez P A, Pau B V, et al. Microbial electrosynthesis of isobutyric, butyric, caproic acids, and corresponding alcohols from carbon dioxide. ACS Sustain Chem Eng, 2018, 6(7): 8485 doi: 10.1021/acssuschemeng.8b00739
    [63]
    Jiang Y, Chu N, Qian D K, et al. Microbial electrochemical stimulation of caproate production from ethanol and carbon dioxide. Bioresour Technol, 2020, 295: 122266 doi: 10.1016/j.biortech.2019.122266
    [64]
    褚娜, 蔣永, 曾建雄. 微生物電合成生產中鏈脂肪酸的基本原理及研究進展. 生物技術通報, 2021, 37(5):237 doi: 10.13560/j.cnki.biotech.bull.1985.2020-1054

    Chu N, Jiang Y, Zeng J X. Principle and research progress in microbial electrosynthesis of medium-chain fatty acids. Biotechnol Bull, 2021, 37(5): 237 doi: 10.13560/j.cnki.biotech.bull.1985.2020-1054
    [65]
    Jiang Y, Chu N, Zhang W, et al. Zinc: A promising material for electrocatalyst-assisted microbial electrosynthesis of carboxylic acids from carbon dioxide. Water Res, 2019, 159: 87 doi: 10.1016/j.watres.2019.04.053
    [66]
    Dhanya B S, Mishra A, Chandel A K, et al. Development of sustainable approaches for converting the organic waste to bioenergy. Sci Total Environ, 2020, 723: 138109 doi: 10.1016/j.scitotenv.2020.138109
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(7)

    Article views (617) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频