<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 9
Sep.  2022
Turn off MathJax
Article Contents
CAI Zhao-zhen, ZHU Miao-yong. Corner crack control for thin slab continuous casting of microalloyed steel[J]. Chinese Journal of Engineering, 2022, 44(9): 1548-1557. doi: 10.13374/j.issn2095-9389.2021.12.30.001
Citation: CAI Zhao-zhen, ZHU Miao-yong. Corner crack control for thin slab continuous casting of microalloyed steel[J]. Chinese Journal of Engineering, 2022, 44(9): 1548-1557. doi: 10.13374/j.issn2095-9389.2021.12.30.001

Corner crack control for thin slab continuous casting of microalloyed steel

doi: 10.13374/j.issn2095-9389.2021.12.30.001
More Information
  • Corresponding author: E-mail: E-mail: myzhu@mail.neu.edu.cn
  • Received Date: 2021-12-30
    Available Online: 2022-02-15
  • Publish Date: 2022-09-01
  • Thin slab continuous casting and rolling process is an important way to produce hot-rolled strips. Recently, the process has been widely used to produce Nb/V/Ti/B bearing microalloyed steel. However, during the continuous casting of the thin slabs of the microalloyed steel, there are frequent cracks on the corners of the slabs, which would cause quality defects, such as scars and cracks at the edges of the hot-rolled coils. These defects are a common technical issue in the steel industry. In this paper, the characteristics of the microstructure and carbonitride precipitation of the thin slab corner of QStE380TM low carbon niobium–titanium bearing microalloyed steel, as well as the reduction of area of the steel under different cooling and tensile rates, were detected. Moreover, the evolutions of the temperature of the solidified shell in different structure molds and secondary cooling processes, as well as the stress of the thin slab surface during liquid core reduction, were numerically simulated. The results show that there is a significant third brittle temperature zone during continuous casting of microalloyed steel thin slabs, and the greater the deformation rate of the thin slab, the more significant the third brittle temperature zone is. Under the conventional thin slab continuous casting process, the cooling rate of the thin slab corners in the upper part of the mold and the secondary cooling zone from the mold exit to the liquid core reduction segment is lower than 5 °C·s?1, which is the key factor to lead a chain of niobium–titanium carbonitrides precipitate at the grain boundaries of the corners. As a result, the plasticity of the thin slab corners is greatly reduced. During the process of liquid core reduction, the low plasticity corners of the thin slab crack because of large deformation and stress. Applying the Gaussian concave curved surface mold, which the narrow face copper plates could efficiently compensate the shell shrinkage, the narrow face-foot roll zone hard cooling process can increase the cooling rates of the thin slab corners over 10 and 20 °C·s?1 in the mold and the narrow face-foot roller cooling zone, respectively. As a result, the carbonitrides precipitate in the thin slab corners disperses, and the stress of the thin slab corners reduces since the new mold promotes the metal flow of slab narrow surface broadsiding during the liquid core reduction. Finally, the cracking rate of the thin slab corners during the microalloyed steel thin slab casting has been reduced significantly.

     

  • loading
  • [1]
    毛新平, 高吉祥, 柴毅忠. 中國薄板坯連鑄連軋技術的發展. 鋼鐵, 2014, 49(7):49

    Mao X P, Gao J X, Chai Y Z. Development of thin slab casting and direct rolling process in China. Iron Steel, 2014, 49(7): 49
    [2]
    張炯明, 周青海, 尹延斌, 等. 連鑄板坯三維二冷動態配水與精準壓下研究與應用. 工程科學學報, 2021, 43(12):1666

    Zhang J M, Zhou Q H, Yin Y B, et al. Research and application of three-dimensional dynamic secondary cooling and accurate soft reduction for continuous casting slab. Chin J Eng, 2021, 43(12): 1666
    [3]
    袁航, 楊樹峰, 王田田, 等. 亞包晶微合金鋼連鑄板坯角部橫裂紋研究進展. 中國冶金, 2020, 30(10):1

    Yuan H, Yang S F, Wang T T, et al. Research progress of transverse corner crack on hypo-peritectic micro-alloyed steel slab. China Metall, 2020, 30(10): 1
    [4]
    蔡文菁, 楊健, 鄧麗琴, 等. 包晶鋼連鑄坯角橫裂的產生機理與控制技術綜述. 煉鋼, 2021, 37(2):37

    Cai W J, Yang J, Deng L Q, et al. Review on mechanism and control technology of transverse corner crack in continuous casting slab of peritectic steel. Steelmaking, 2021, 37(2): 37
    [5]
    Toishi K, Miki Y, Kikuchi N. Simulation of crack initiation on the slab in continuous casting machine by FEM. ISIJ Int, 2019, 59(5): 865 doi: 10.2355/isijinternational.ISIJINT-2018-679
    [6]
    丁占元, 馮長寶, 陳建梁. 湛江鋼鐵2300 mm連鑄板坯角橫裂缺陷的改善. 寶鋼技術, 2018(1):59 doi: 10.3969/j.issn.1008-0716.2018.01.012

    Ding Z Y, Feng C B, Chen J L. Reduction of transverse corner cracks in 2300 mm continuous cast slab of Zhanjiang Iron & Steel Co. ,Ltd. Baosteel Technol, 2018(1): 59 doi: 10.3969/j.issn.1008-0716.2018.01.012
    [7]
    Hwang B, Lee H S, Kim Y G, et al. Analysis and prevention of side cracking phenomenon occurring during hot rolling of thick low-carbon steel plates. Mater Sci Eng A, 2005, 402(1-2): 177 doi: 10.1016/j.msea.2005.04.045
    [8]
    Mintz B. The influence of composition on the hot ductility of steels and to the problem of transverse cracking. ISIJ Int, 1999, 39(9): 833 doi: 10.2355/isijinternational.39.833
    [9]
    Mintz B, Yue S, Jonas J J. Hot ductility of steels and its relationship to the problem of transverse cracking during continuous casting. Int Mater Rev, 1991, 36(1): 187 doi: 10.1179/imr.1991.36.1.187
    [10]
    Park J S, Ha Y S, Lee S J, et al. Dissolution and precipitation kinetics of Nb(C, N) in austenite of a low-carbon Nb-microalloyed steel. Metall Mater Trans A, 2009, 40(3): 560 doi: 10.1007/s11661-008-9758-0
    [11]
    Ma F J, Wen G H, Tang P, et al. Causes of transverse corner cracks in microalloyed steel in vertical bending continuous slab casters. Ironmak Steelmak, 2010, 37(1): 73 doi: 10.1179/030192309X12506804200465
    [12]
    Ma F J, Wen G H, Tang P, et al. Effect of cooling rate on the precipitation behavior of carbonitride in microalloyed steel slab. Metall Mater Trans B, 2011, 42(1): 81 doi: 10.1007/s11663-010-9454-5
    [13]
    Dippenaar R. Transverse surface cracks in continuously cast steel slabs, oscillation marks and austenite grain size. Mater Sci Forum, 2010, 638-642: 3603 doi: 10.4028/www.scientific.net/MSF.638-642.3603
    [14]
    顏慧成, 成旭東, 鞏彥坤, 等. 連鑄板坯快冷試驗分析Q345D包晶鋼板坯角部橫裂成因和工藝改進. 特殊鋼, 2019, 40(5):64 doi: 10.3969/j.issn.1003-8620.2019.05.017

    Yan H C, Cheng X D, Gong Y K, et al. Analysis on formation of transverse corner cracks of slab of peritectic steel Q345D by slab quenching test and process improvement. Special Steel, 2019, 40(5): 64 doi: 10.3969/j.issn.1003-8620.2019.05.017
    [15]
    Xu L J, Zhang S L, Qiu C G, et al. Surface microstructure control of microalloyed steel during slab casting. J Iron Steel Res Int, 2017, 24(8): 803 doi: 10.1016/S1006-706X(17)30120-6
    [16]
    Zong N F, Liu Y, Ma S D, et al. A review of chamfer technology in continuous casting process. Metall Res Technol, 2020, 117(2): 204 doi: 10.1051/metal/2020014
    [17]
    路殿華, 王振鵬, 張慧. 微合金化鋼連鑄坯邊角部無缺陷生產技術開發. 連鑄, 2020, 45(5):66

    Lu D H, Wang Z P, Zhang H. Development of production technology of micro-alloyed steel continuous casting billet without corner defects. Continuous Cast, 2020, 45(5): 66
    [18]
    Kato T, Ito Y, Kawamoto M, et al. Prevention of slab surface transverse cracking by microstructure control. ISIJ Int, 2003, 43(11): 1742 doi: 10.2355/isijinternational.43.1742
    [19]
    Baba N, Ohta K, Ito Y, et al. Prevention of slab surface transverse cracking at Kashima n° 2 caster with Surface Structure Control (SSC) cooling. Rev Met Paris, 2006, 103(4): 174 doi: 10.1051/metal:2006163
    [20]
    Niu Z Y, Cai Z Z, Zhu M Y. Dynamic distributions of mold flux and air gap in slab continuous casting mold. ISIJ Int, 2019, 59(2): 283 doi: 10.2355/isijinternational.ISIJINT-2018-609
    [21]
    Niu Z Y, Cai Z Z, Zhu M Y. Heat transfer behaviour of funnel mould copper plates during thin slab continuous casting and channel structure optimization. Ironmak Steelmak, 2020, 47(10): 1135 doi: 10.1080/03019233.2019.1674590
    [22]
    蔡兆鎮, 安家志, 劉志遠, 等. 微合金鋼連鑄坯角部裂紋控制技術研發及應用. 鋼鐵研究學報, 2019, 31(2):117

    Cai Z Z, An J Z, Liu Z Y, et al. Research on development and application of micro-alloyed steel slab corner transversal crack control technology. J Iron Steel Res, 2019, 31(2): 117
    [23]
    劉志遠, 王重君, 蔡兆鎮, 等. 含鈮微合金鋼連鑄坯角部裂紋控制二冷新工藝. 中國冶金, 2018, 28(3):22

    Liu Z Y, Wang C J, Cai Z Z, et al. New secondary cooling process for transverse corner crack control of Nb micro-alloyed steel slab. China Metall, 2018, 28(3): 22
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(16)  / Tables(2)

    Article views (2408) PDF downloads(87) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频