Citation: | CAI Zhao-zhen, ZHU Miao-yong. Corner crack control for thin slab continuous casting of microalloyed steel[J]. Chinese Journal of Engineering, 2022, 44(9): 1548-1557. doi: 10.13374/j.issn2095-9389.2021.12.30.001 |
[1] |
毛新平, 高吉祥, 柴毅忠. 中國薄板坯連鑄連軋技術的發展. 鋼鐵, 2014, 49(7):49
Mao X P, Gao J X, Chai Y Z. Development of thin slab casting and direct rolling process in China. Iron Steel, 2014, 49(7): 49
|
[2] |
張炯明, 周青海, 尹延斌, 等. 連鑄板坯三維二冷動態配水與精準壓下研究與應用. 工程科學學報, 2021, 43(12):1666
Zhang J M, Zhou Q H, Yin Y B, et al. Research and application of three-dimensional dynamic secondary cooling and accurate soft reduction for continuous casting slab. Chin J Eng, 2021, 43(12): 1666
|
[3] |
袁航, 楊樹峰, 王田田, 等. 亞包晶微合金鋼連鑄板坯角部橫裂紋研究進展. 中國冶金, 2020, 30(10):1
Yuan H, Yang S F, Wang T T, et al. Research progress of transverse corner crack on hypo-peritectic micro-alloyed steel slab. China Metall, 2020, 30(10): 1
|
[4] |
蔡文菁, 楊健, 鄧麗琴, 等. 包晶鋼連鑄坯角橫裂的產生機理與控制技術綜述. 煉鋼, 2021, 37(2):37
Cai W J, Yang J, Deng L Q, et al. Review on mechanism and control technology of transverse corner crack in continuous casting slab of peritectic steel. Steelmaking, 2021, 37(2): 37
|
[5] |
Toishi K, Miki Y, Kikuchi N. Simulation of crack initiation on the slab in continuous casting machine by FEM. ISIJ Int, 2019, 59(5): 865 doi: 10.2355/isijinternational.ISIJINT-2018-679
|
[6] |
丁占元, 馮長寶, 陳建梁. 湛江鋼鐵2300 mm連鑄板坯角橫裂缺陷的改善. 寶鋼技術, 2018(1):59 doi: 10.3969/j.issn.1008-0716.2018.01.012
Ding Z Y, Feng C B, Chen J L. Reduction of transverse corner cracks in 2300 mm continuous cast slab of Zhanjiang Iron & Steel Co.
|
[7] |
Hwang B, Lee H S, Kim Y G, et al. Analysis and prevention of side cracking phenomenon occurring during hot rolling of thick low-carbon steel plates. Mater Sci Eng A, 2005, 402(1-2): 177 doi: 10.1016/j.msea.2005.04.045
|
[8] |
Mintz B. The influence of composition on the hot ductility of steels and to the problem of transverse cracking. ISIJ Int, 1999, 39(9): 833 doi: 10.2355/isijinternational.39.833
|
[9] |
Mintz B, Yue S, Jonas J J. Hot ductility of steels and its relationship to the problem of transverse cracking during continuous casting. Int Mater Rev, 1991, 36(1): 187 doi: 10.1179/imr.1991.36.1.187
|
[10] |
Park J S, Ha Y S, Lee S J, et al. Dissolution and precipitation kinetics of Nb(C, N) in austenite of a low-carbon Nb-microalloyed steel. Metall Mater Trans A, 2009, 40(3): 560 doi: 10.1007/s11661-008-9758-0
|
[11] |
Ma F J, Wen G H, Tang P, et al. Causes of transverse corner cracks in microalloyed steel in vertical bending continuous slab casters. Ironmak Steelmak, 2010, 37(1): 73 doi: 10.1179/030192309X12506804200465
|
[12] |
Ma F J, Wen G H, Tang P, et al. Effect of cooling rate on the precipitation behavior of carbonitride in microalloyed steel slab. Metall Mater Trans B, 2011, 42(1): 81 doi: 10.1007/s11663-010-9454-5
|
[13] |
Dippenaar R. Transverse surface cracks in continuously cast steel slabs, oscillation marks and austenite grain size. Mater Sci Forum, 2010, 638-642: 3603 doi: 10.4028/www.scientific.net/MSF.638-642.3603
|
[14] |
顏慧成, 成旭東, 鞏彥坤, 等. 連鑄板坯快冷試驗分析Q345D包晶鋼板坯角部橫裂成因和工藝改進. 特殊鋼, 2019, 40(5):64 doi: 10.3969/j.issn.1003-8620.2019.05.017
Yan H C, Cheng X D, Gong Y K, et al. Analysis on formation of transverse corner cracks of slab of peritectic steel Q345D by slab quenching test and process improvement. Special Steel, 2019, 40(5): 64 doi: 10.3969/j.issn.1003-8620.2019.05.017
|
[15] |
Xu L J, Zhang S L, Qiu C G, et al. Surface microstructure control of microalloyed steel during slab casting. J Iron Steel Res Int, 2017, 24(8): 803 doi: 10.1016/S1006-706X(17)30120-6
|
[16] |
Zong N F, Liu Y, Ma S D, et al. A review of chamfer technology in continuous casting process. Metall Res Technol, 2020, 117(2): 204 doi: 10.1051/metal/2020014
|
[17] |
路殿華, 王振鵬, 張慧. 微合金化鋼連鑄坯邊角部無缺陷生產技術開發. 連鑄, 2020, 45(5):66
Lu D H, Wang Z P, Zhang H. Development of production technology of micro-alloyed steel continuous casting billet without corner defects. Continuous Cast, 2020, 45(5): 66
|
[18] |
Kato T, Ito Y, Kawamoto M, et al. Prevention of slab surface transverse cracking by microstructure control. ISIJ Int, 2003, 43(11): 1742 doi: 10.2355/isijinternational.43.1742
|
[19] |
Baba N, Ohta K, Ito Y, et al. Prevention of slab surface transverse cracking at Kashima n° 2 caster with Surface Structure Control (SSC) cooling. Rev Met Paris, 2006, 103(4): 174 doi: 10.1051/metal:2006163
|
[20] |
Niu Z Y, Cai Z Z, Zhu M Y. Dynamic distributions of mold flux and air gap in slab continuous casting mold. ISIJ Int, 2019, 59(2): 283 doi: 10.2355/isijinternational.ISIJINT-2018-609
|
[21] |
Niu Z Y, Cai Z Z, Zhu M Y. Heat transfer behaviour of funnel mould copper plates during thin slab continuous casting and channel structure optimization. Ironmak Steelmak, 2020, 47(10): 1135 doi: 10.1080/03019233.2019.1674590
|
[22] |
蔡兆鎮, 安家志, 劉志遠, 等. 微合金鋼連鑄坯角部裂紋控制技術研發及應用. 鋼鐵研究學報, 2019, 31(2):117
Cai Z Z, An J Z, Liu Z Y, et al. Research on development and application of micro-alloyed steel slab corner transversal crack control technology. J Iron Steel Res, 2019, 31(2): 117
|
[23] |
劉志遠, 王重君, 蔡兆鎮, 等. 含鈮微合金鋼連鑄坯角部裂紋控制二冷新工藝. 中國冶金, 2018, 28(3):22
Liu Z Y, Wang C J, Cai Z Z, et al. New secondary cooling process for transverse corner crack control of Nb micro-alloyed steel slab. China Metall, 2018, 28(3): 22
|