<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 9
Sep.  2022
Turn off MathJax
Article Contents
ZHU Li-guang, ZHANG Qing-jun. Fundamental research of the microalloying theory based on oxide metallurgy technology[J]. Chinese Journal of Engineering, 2022, 44(9): 1529-1537. doi: 10.13374/j.issn2095-9389.2021.12.27.005
Citation: ZHU Li-guang, ZHANG Qing-jun. Fundamental research of the microalloying theory based on oxide metallurgy technology[J]. Chinese Journal of Engineering, 2022, 44(9): 1529-1537. doi: 10.13374/j.issn2095-9389.2021.12.27.005

Fundamental research of the microalloying theory based on oxide metallurgy technology

doi: 10.13374/j.issn2095-9389.2021.12.27.005
More Information
  • Corresponding author: ZHU Li-guang, E-mail: hbkjdxzlg@163.com; ZHANG Qing-jun, E-mail: hbkjdxzlg@163.com
  • Received Date: 2021-12-27
    Available Online: 2022-03-30
  • Publish Date: 2022-09-01
  • In China’s marine strategy, using oxide metallurgy technology to develop high heat input welding steel is an important guarantee for developing marine engineering equipment and high-tech ships. The theory of microalloying based on oxide metallurgy studies the mechanism of multiple factors that induce preferential competitive precipitation of ferrite in grain. This theory integrates the oxide metallurgy technology into the entire process of design, production, and welding of high heat input welding steels and considers the requirements of strength, toughness, and weldability of thick plate steel. Herein, the development of oxide metallurgy technology at home and abroad was introduced, and then the progress of microalloying theory based on oxide metallurgy was expounded. Meanwhile, the coordination and interaction of various microalloying elements, as well as the influence of the precipitation and evolution of inclusions and second-phase particles on the microstructure transformation and steel properties, were investigated. The thermodynamics and kinetics of the precipitation of beneficial inclusions during smelting and solidification were analyzed. The effects of the inclusions’ properties, size, and distribution on the nucleation of Ferrin were analyzed. The mechanisms of microstructure evolution, grain refinement, preferential precipitation of ferrite, and improvement of strength and toughness of base steel and weld heat-affected zone during hot working and welding were reviewed. The research progress and existing problems of oxide metallurgy were completely summarized. Combined with the results of the research group, the theory of microalloying based on oxide metallurgy was put forward, and microalloying based on oxide metallurgy has been proposed. Including the design theory of the microalloy system, the synergistic and interactive mechanism of microalloying elements under the condition of multi-element coexistence, and the effects of microalloying elements oxidation, carbonitriding, and sulfurization on the formation, evolution, and distribution of inclusions and second-phase particles in the whole process. The mechanism of inclusions and the properties and distribution of the second-phase particles improving the strength and toughness of coarse-grain heat-affected zone (CGHAZ) and inducing the preferential precipitation of ferrite in grain were also discussed. Microalloying based on oxide metallurgy is a further development of the oxide metallurgy technology. This research will greatly promote the development of oxide metallurgy technology. This will provide a theoretical and technical basis for developing steel materials with high strength, high toughness, and excellent weldability. It will provide an effective method for producing high-strength and high-toughness thick plate steel, section steel, and nonquenched and tempered steel by oxide metallurgy technology.

     

  • loading
  • [1]
    Zavdoveev A, Poznyakov V, Baudin T, et al. Welding thermal cycle impact on the microstructure and mechanical properties of thermo-mechanical control process steels. Steel Res Int, 2021, 92(6): 2000645 doi: 10.1002/srin.202000645
    [2]
    王國棟, 尚成嘉, 劉振宇. 海洋工程鋼鐵材料. 北京: 化學工業出版社, 2017

    Wang G D, Shang C J, Liu Z Y. Steel for Marine Applications. Beijing: Chemical Industry Press, 2017
    [3]
    Zhang D, Terasaki H, Komizo Y I. In situ observation of the formation of intragranular acicular ferrite at non-metallic inclusions in C-Mn steel. Acta Mater, 2010, 58(4): 1369 doi: 10.1016/j.actamat.2009.10.043
    [4]
    金沢正午, 中島明, 岡本健太郎, 等. 微細TiNによる溶接ボンド部靱性の改善と大入熱溶接用鋼の開発. 鉄と鋼, 1975, 61:2589 doi: 10.2355/tetsutohagane1955.61.11_2589

    Kanazawa S, Nakashima A, Okamoto K, et al. Improved toughness of weld fussion zone by fine TiN particles and development of a steel for large heat input welding. Tetsu-to-Hagane, 1975, 61: 2589 doi: 10.2355/tetsutohagane1955.61.11_2589
    [5]
    Zou X D, Sun J C, Matsuura H, et al. Unravelling microstructure evolution and grain boundary misorientation in coarse-grained heat-affected zone of EH420 shipbuilding steel subject to varied welding heat inputs. Metall Mater Trans A, 2020, 51(3): 1044
    [6]
    Mabuchi H, Uemori R, Fujioka M. The role of Mn depletion in intra-granular ferrite transformation in the heat affected zone of welded joints with large heat input in structural steels. ISIJ Int, 1996, 36(11): 1406 doi: 10.2355/isijinternational.36.1406
    [7]
    山本広一, 長谷川俊水, 高村仁ー. 含Tiオキサイド鋼における粒內フェライト変態におよぼすBの効果. 鉄と鋼, 1993, 79(10):1169 doi: 10.2355/tetsutohagane1955.79.10_1169

    Yamamoto K, Hasegawa T, Takamura J. Effect of B on the intra-granular ferrite formation in Ti-oxides bearing steels. Tetsu-to-Hagane, 1993, 79(10): 1169 doi: 10.2355/tetsutohagane1955.79.10_1169
    [8]
    後藤裕規, 山口一, 荻林成章, 等. 鋼の急冷凝固時の酸化物晶出挙動. 鉄と鋼, 1997, 83(12):833 doi: 10.2355/tetsutohagane1955.83.12_833

    Goto H, Yamaguchi K, Ogibayashi S, et al. Behavior of oxide precipitation during rapid solidification of steel. Tetsu-to-Hagane, 1997, 83(12): 833 doi: 10.2355/tetsutohagane1955.83.12_833
    [9]
    Kojima A, Kiyose A, Uemori R, et al. Super high HAZ toughness technology with fine microstructure imparted by fine particles. Nippon Steel Technical Report, 2004, 90: 2
    [10]
    Yang J, Zhu K, Wang R Z, et al. Excellent heat affected zone toughness technology improved by use of strong deoxidizers. J Iron Steel Res Int, 2011, 18(Suppl 2): 141
    [11]
    Fukunaga K, Watanabe Y, Yoshii K, et al. High strength TMCP steel plate for offshore structure with excellent HAZ toughness at welded joints. Nippon Steel Sumitomo Met Tech Rep, 2015(110): 43
    [12]
    Jiang Q L, Li Y J, Wang J, et al. Effects of Mn and Ti on microstructure and inclusions in weld metal of high strength low alloy steel. Mater Sci Technol, 2011, 27(9): 1385 doi: 10.1179/026708310X12701149768052
    [13]
    Sarma D, Karasev A, J?nsson P. On the role of non-metallic inclusions in the nucleation of acicular ferrite in steels. ISIJ Int, 2009, 49(7): 1063 doi: 10.2355/isijinternational.49.1063
    [14]
    若生昌光. 鋼中的氧化物系夾雜物的微細分散及組成控制技術. 重鋼技術, 2011, 54(1):27

    Ruosheng C G. Fine dispersion and composition control technology of oxide inclusions in steel. CISC Technol, 2011, 54(1): 27
    [15]
    Xu L Y, Yang J, Wang R Z, et al. Effect of Mg addition on formation of intragranular acicular ferrite in heat-affected zone of steel plate after high-heat-input welding. J Iron Steel Res Int, 2018, 25(4): 433 doi: 10.1007/s42243-018-0054-y
    [16]
    Wang Y, Zhu L G, Zhang Q J, et al. Effect of Mg treatment on refining the microstructure and improving the toughness of the heat-affected zone in shipbuilding steel. Metals, 2018, 8(8): 616 doi: 10.3390/met8080616
    [17]
    Bin W, Bo S. In situ observation of the evolution of intragranular acicular ferrite at Ce-containing inclusions in 16Mn steel. Steel Res Int, 2012, 83(5): 487 doi: 10.1002/srin.201100266
    [18]
    Mousavi Anijdan S H, Sediako D, Yue S. Optimization of flow stress in cool deformed Nb-microalloyed steel by combining strain induced transformation of retained austenite, cooling rate and heat treatment. Acta Mater, 2012, 60(3): 1221 doi: 10.1016/j.actamat.2011.11.019
    [19]
    Zhang C L, Liu Y Z, Jiang C, et al. Effects of niobium and vanadium on hydrogen-induced delayed fracture in high strength spring steel. J Iron Steel Res Int, 2011, 18(6): 49 doi: 10.1016/S1006-706X(11)60077-0
    [20]
    鄭明新. 工程材料. 2版. 北京: 清華大學出版社, 1991

    Zheng M X. Engineering Materials. 2nd Ed. Beijing: Tsinghua University Press, 1991
    [21]
    Shi Z R, Wang J J, Chai X Y, et al. Effect of boron on intragranular ferrite nucleation mechanism in coarse grain heat-affected zone of high-nitrogen steel. Mater Lett, 2020, 258: 126819 doi: 10.1016/j.matlet.2019.126819
    [22]
    Shim J H, Byun J S, Cho Y W, et al. Mn absorption characteristics of Ti2O3 inclusions in low carbon steels. Scr Mater, 2001, 44(1): 49 doi: 10.1016/S1359-6462(00)00560-1
    [23]
    Byun J S, Shim J H, Cho Y W, et al. Non-metallic inclusion and intragranular nucleation of ferrite in Ti-killed C-Mn steel. Acta Mater, 2003, 51(6): 1593 doi: 10.1016/S1359-6454(02)00560-8
    [24]
    Lee J L. Evaluation of the nucleation potential of intragranular acicular ferrite in steel weldments. Acta Metall Mater, 1994, 42(10): 3291 doi: 10.1016/0956-7151(94)90461-8
    [25]
    Shi Z R, Chai X Y, Chai F, et al. The mechanism of intragranular ferrite formed on Ti-rich (Ti, V)(C, N) precipitates in the coarse heat affected zone of a V-N-Ti microalloyed steel. Mater Lett, 2016, 175: 266 doi: 10.1016/j.matlet.2016.04.033
    [26]
    Lin C K, Pan Y C, Su Y H F, et al. Effects of Mg-Al-O-Mn-S inclusion on the nucleation of acicular ferrite in magnesium-containing low-carbon steel. Mater Charact, 2018, 141: 318 doi: 10.1016/j.matchar.2018.05.005
    [27]
    Lee J L, Pan Y T. The formation of intragranular acicular ferrite in simulated heat-affected zone. ISIJ Int, 1995, 35(8): 1027 doi: 10.2355/isijinternational.35.1027
    [28]
    Wang C, Wang Z D, Wang G D. Effect of hot deformation and controlled cooling process on microstructures of Ti–Zr deoxidized low carbon steel. ISIJ Int, 2016, 56(10): 1800 doi: 10.2355/isijinternational.ISIJINT-2016-106
    [29]
    王國棟. 高質量中厚板生產關鍵共性技術研發現狀和前景. 軋鋼, 2019, 36(1):1

    Wang G D. Status and prospects of research and development of key common technologies for high-quality heavy and medium plate production. Steel Roll, 2019, 36(1): 1
    [30]
    Wan X L, Wu K M, Cheng L, et al. In-situ observations of acicular ferrite growth behavior in the simulated coarse-grained heat-affected zone of high-strength low-alloy steels. ISIJ Int, 2015, 55(3): 679 doi: 10.2355/isijinternational.55.679
    [31]
    Shim J H, Byun J S, Cho Y W, et al. Hot deformation and acicular ferrite microstructure in C-Mn steel containing Ti2O3 inclusions. ISIJ Int, 2000, 40(8): 819 doi: 10.2355/isijinternational.40.819
    [32]
    Thewlis G, Whiteman J A, Senogles D J. Dynamics of austenite to ferrite phase transformation in ferrous weld metals. Mater Sci Technol, 1997, 13(3): 257 doi: 10.1179/mst.1997.13.3.257
    [33]
    Kang J S, Seol J B, Park C G. Three-dimensional characterization of bainitic microstructures in low-carbon high-strength low-alloy steel studied by electron backscatter diffraction. Mater Charact, 2013, 79: 110 doi: 10.1016/j.matchar.2013.02.009
    [34]
    Nako H, Hatano H, Okazaki Y, et al. Crystal orientation relationships between acicular ferrite, oxide, and the austenite matrix. ISIJ Int, 2014, 54(7): 1690 doi: 10.2355/isijinternational.54.1690
    [35]
    Wang B X, Liu X H, Wang G D. Inclusion characteristics and acicular ferrite nucleation in Ti-containing weld metals of X80 pipeline steel. Metall Mater Trans A, 2018, 49: 2124 doi: 10.1007/s11661-018-4570-y
    [36]
    Blais C, L'Espérance G, Evans G M. Characterisation of inclusions found in C-Mn steel welds containing titanium. Sci Technol Weld Join, 1999, 4(3): 143 doi: 10.1179/136217199101537680
    [37]
    Kang Y, Jeong S, Kang J H, et al. Factors affecting the inclusion potency for acicular ferrite nucleation in high-strength steel welds. Metall Mater Trans A, 2016, 47(6): 2842 doi: 10.1007/s11661-016-3456-0
    [38]
    Wu X Y, Wu S J, Yan C L, et al. Investigation of inclusion characteristics and intragranular acicular ferrite nucleation in Mg-containing low-carbon steel. Metall Mater Trans B, 2021, 52(2): 1012 doi: 10.1007/s11663-021-02073-1
    [39]
    Yamamoto K, Hasegawa T, Takamura J I. Effect of boron on intra-granular ferrite formation in Ti-oxide bearing steels. ISIJ Int, 1996, 36(1): 80 doi: 10.2355/isijinternational.36.80
    [40]
    Zhao F, Zhou N B, Wu M, et al. Intragranular ferrite formed in a V-Ti-N medium-carbon steel containing MnS inclusions. Steel Res Int, 2017, 88(12): 1700133 doi: 10.1002/srin.201700133
    [41]
    Xiong Z H, Liu S L, Wang X M, et al. Relationship between crystallographic structure of the Ti2O3/MnS complex inclusion and microstructure in the heat-affected zone (HAZ) in steel processed by oxide metallurgy route and impact toughness. Mater Charact, 2015, 106: 232 doi: 10.1016/j.matchar.2015.06.001
    [42]
    Zhu L G, Wang Y, Wang S M, et al. Research of microalloy elements to induce intragranular acicular ferrite in shipbuilding steel. Ironmak Steelmak, 2019, 46(6): 499 doi: 10.1080/03019233.2017.1405153
    [43]
    Xu Y, Wu Y G, Zhang C J, et al. Precipitation and growth of inclusions in solidification process of steel. J Iron Steel Res Int, 2015, 22(9): 804 doi: 10.1016/S1006-706X(15)30074-1
    [44]
    Wu X Y, Xiao P C, Wu S J, et al. Effect of molybdenum on the impact toughness of heat-affected zone in high-strength low-alloy steel. Materials, 2021, 14(6): 1430 doi: 10.3390/ma14061430
    [45]
    朱立光, 王雁, 王碩明, 等. 微合金元素釩和鈮對誘發針狀鐵素體的影響. 鋼鐵, 2019, 54(8):216

    Zhu L G, Wang Y, Wang S M, et al. Effect of microalloy elements V and Nb on induction of intragranular acicular ferrite. Iron Steel, 2019, 54(8): 216
    [46]
    Cui Z M, Zhu L G, Li Y L, et al. Relationship between crystal structure of inclusions and formation of acicular ferrites. J Iron Steel Res Int, 2016, 23(6): 586 doi: 10.1016/S1006-706X(16)30092-9
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(4)

    Article views (2306) PDF downloads(93) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频